Abstract
Herpes simplex virus (HSV)-specific proteins fall into at least three kinetic classes whose synthesis is sequentially and coordinaely regulated. Temperature-sensitive (ts) mutants of one complementation group (1-2) are defective in the transition from immediate early to early and late protein synthesis. To elucidate the function of the 1-2 gene product in the HSV type 1 replicative cycle, nine ts mutants in this group were mapped by fine-structure analysis and characterized members of the group lie within the terminally repeated sequences of the S region of the genome. Fine-structure genetic and physical mapping permitted the mutations to be ordered within these sequences. Because it has been shown that the message for VP175 and the DNA template specifying this protein extend beyond the limits of the physical map of the mutations, it follows that the mutations must lie within the structural gene for VP175. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that most members of the group overproduced the immediate early proteins VP175, -136, -110, and -63 and markedly underproduced early and late proteins at the nonpermissive temperature. In temperature shiftup experiments, it was fund that the synthesis of early and late proteins ceased, whereas the synthesis of immediate early proteins began again. Thus, it is postulated that VP175 is (i) involved in the transition from immediate early to early protein synthesis, (ii) requird continuously to maintain early protein synthesis, (iii) autoregulated, acting to inhibit immediate early protein synthesis.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
396 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献