Production of a Particulate Hepatitis C Vaccine Candidate by an Engineered Lactococcus lactis Strain

Author:

Parlane Natalie A.,Grage Katrin,Lee Jason W.,Buddle Bryce M.,Denis Michel,Rehm Bernd H. A.

Abstract

ABSTRACTVaccine delivery systems based on display of antigens on bioengineered bacterial polyester inclusions can stimulate cellular immune responses. The food-grade Gram-positive bacteriumLactococcus lactiswas engineered to produce spherical polyhydroxybutyrate (PHB) inclusions which abundantly displayed the hepatitis C virus core (HCc) antigen. In mice, the immune response induced by this antigen delivery system was compared to that induced by vaccination with HCc antigen displayed on PHB beads produced inEscherichia coli, to PHB beads without antigen produced inL. lactisorE. coli, or directly to the recombinant HCc protein. Vaccination site lesions were minimal in all mice vaccinated with HCc PHB beads or recombinant protein, all mixed in the oil-in-water adjuvant Emulsigen, while vaccination with the recombinant protein in complete Freund's adjuvant produced a marked inflammatory reaction at the vaccination site. Vaccination with the PHB beads produced inL. lactisand displaying HCc antigen produced antigen-specific cellular immune responses with significant release of gamma interferon (IFN-γ) and interleukin-17A (IL-17A) from splenocyte cultures and no significant antigen-specific serum antibody, while the PHB beads displaying HCc but produced inE. colireleased IFN-γ and IL-17A as well as the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and IL-6 and low levels of IgG2c antibody. In contrast, recombinant HCc antigen in Emulsigen produced a diverse cytokine response and a strong IgG1 antibody response. Overall it was shown thatL. lactiscan be used to produce immunogenic PHB beads displaying viral antigens, making the beads suitable for vaccination against viral infections.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3