Population Pharmacokinetic and Pharmacodynamic Modeling of Amodiaquine and Desethylamodiaquine in Women with Plasmodium vivax Malaria during and after Pregnancy

Author:

Tarning Joel12,Chotsiri Palang1,Jullien Vincent3,Rijken Marcus J.4,Bergstrand Martin5,Cammas Mireille3,McGready Rose124,Singhasivanon Pratap6,Day Nicholas P. J.12,White Nicholas J.12,Nosten Francois124,Lindegardh Niklas12

Affiliation:

1. Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand

2. Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom

3. Université Paris Descartes, INSERM U663, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Vincent de Paul, Paris, France

4. Shoklo Malaria Research Unit, Mae Sot, Thailand

5. Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden

6. Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand

Abstract

ABSTRACT Amodiaquine is effective for the treatment of Plasmodium vivax malaria, but there is little information on the pharmacokinetic and pharmacodynamic properties of amodiaquine in pregnant women with malaria. This study evaluated the population pharmacokinetic and pharmacodynamic properties of amodiaquine and its biologically active metabolite, desethylamodiaquine, in pregnant women with P. vivax infection and again after delivery. Twenty-seven pregnant women infected with P. vivax malaria on the Thai-Myanmar border were treated with amodiaquine monotherapy (10 mg/kg/day) once daily for 3 days. Nineteen women, with and without P. vivax infections, returned to receive the same amodiaquine dose postpartum. Nonlinear mixed-effects modeling was used to evaluate the population pharmacokinetic and pharmacodynamic properties of amodiaquine and desethylamodiaquine. Amodiaquine plasma concentrations were described accurately by lagged first-order absorption with a two-compartment disposition model followed by a three-compartment disposition of desethylamodiaquine under the assumption of complete in vivo conversion. Body weight was implemented as an allometric function on all clearance and volume parameters. Amodiaquine clearance decreased linearly with age, and absorption lag time was reduced in pregnant patients. Recurrent malaria infections in pregnant women were modeled with a time-to-event model consisting of a constant-hazard function with an inhibitory effect of desethylamodiaquine. Amodiaquine treatment reduced the risk of recurrent infections from 22.2% to 7.4% at day 35. In conclusion, pregnancy did not have a clinically relevant impact on the pharmacokinetic properties of amodiaquine or desethylamodiaquine. No dose adjustments are required in pregnancy.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3