Abrogation of Viral Interleukin-6 (vIL-6)-Induced Signaling by Intracellular Retention and Neutralization of vIL-6 with an Anti-vIL-6 Single-Chain Antibody Selected by Phage Display

Author:

Kovaleva Marina1,Bussmeyer Ingo1,Rabe Björn1,Grötzinger Joachim1,Sudarman Enge2,Eichler Jutta2,Conrad Udo3,Rose-John Stefan1,Scheller Jürgen1

Affiliation:

1. Department of Biochemistry, Christian Albrechts Universität, Kiel, Germany

2. Gesellschaft für Biotechnologische Forschung GmbH, Braunschweig, Germany

3. Institut für Pflanzengenetik und Kulturpflanzenforschung Gatersleben (IPK), Gatersleben, Germany

Abstract

ABSTRACT Human herpesvirus 8 (HHV-8) encodes several putative oncogenes, which are homologues to cellular host genes known to function in cell cycle regulation, control of apoptosis, and cytokine signaling. Viral interleukin (vIL-6) is believed to play an important role in the pathogenesis of Kaposi's sarcoma as well as primary effusion lymphoma and multicentric Castleman's disease. Therefore, vIL-6 is a promising target for novel therapies directed against HHV-8-associated diseases. By phage display screening of human synthetic antibody libraries, we have selected a specific recombinant antibody, called monoclonal anti-vIL-6 (MAV), binding to vIL-6. The epitope recognized by MAV was localized on the top of the D helix of the vIL-6 protein, which is a part of receptor binding site III. Consequently, MAV specifically inhibits vIL-6-mediated growth of the primary effusion lymphoma-derived cell line BCBL-1 and blocks STAT3 phosphorylation in the human hepatoma cell line HepG2. Since it was previously found that vIL-6 can also induce signals from within the cell, presumably within the endoplasmic reticulum, we fused the recombinant antibody MAV with the endoplasmic retention sequence KDEL (MAV-KDEL). As a result, COS-7 cells expressing MAV-KDEL and synthesizing vIL-6 ceased to secrete the cytokine. Moreover, we observed that vIL-6 that was bound to MAV-KDEL and retained in the endoplasmic reticulum did not induce STAT3 phosphorylation in HepG2 cells. We conclude that the activity of the intracellularly retained vIL-6 protein is neutralized by MAV-KDEL. Our results might represent a novel therapeutic strategy to neutralize virally encoded growth factors or oncogenes.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3