Antibody profiling and predictive modeling discriminate between Kaposi sarcoma and asymptomatic KSHV infection

Author:

Bennett Sydney J.,Yalcin Dicle,Privatt Sara R.,Ngalamika Owen,Lidenge Salum J.,West John T.,Wood CharlesORCID

Abstract

Protein-level immunodominance patterns against Kaposi sarcoma-associated herpesvirus (KSHV), the aetiologic agent of Kaposi sarcoma (KS), have been revealed from serological probing of whole protein arrays, however, the epitopes that underlie these patterns have not been defined. We recently demonstrated the utility of phage display in high-resolution linear epitope mapping of the KSHV latency-associated nuclear antigen (LANA/ORF73). Here, a VirScan phage immunoprecipitation and sequencing approach, employing a library of 1,988 KSHV proteome-derived peptides, was used to quantify the breadth and magnitude of responses of 59 sub-Saharan African KS patients and 22 KSHV-infected asymptomatic individuals (ASY), and ultimately to support an application of machine-learning-based predictive modeling using the peptide-level responses. Comparing anti-KSHV antibody repertoire revealed that magnitude, not breadth, increased in KS. The most targeted epitopes in both KS and ASY were in the immunodominant proteins, notably, K8.129−56 and ORF65140-168, in addition to LANA. Finally, using unbiased machine-learning-based predictive models, reactivity to a subset of 25 discriminative peptides was demonstrated to successfully classify KS patients from asymptomatic individuals. Our study provides the highest resolution mapping of antigenicity across the entire KSHV proteome to date, which is vital to discern mechanisms of viral pathogenesis, to define prognostic biomarkers, and to design effective vaccine and therapeutic strategies. Future studies will investigate the diagnostic, prognostic, and therapeutic potential of the 25 discriminative peptides.

Funder

National Institute of General Medical Sciences

Fred and Pamela Buffett Cancer Center

National Cancer Institute

Fogarty International Center

National Institute of Allergy and Infectious Diseases

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3