Bacteriolysis of Veillonella alcalescens by lysozyme and inorganic anions present in saliva

Author:

Tortosa M,Cho M I,Wilkens T J,Iacono V J,Pollock J J

Abstract

Veillonella alcalescens subsp. dispar was grown in a synthetic medium containing either radiolabeled thymidine or uridine to monitor cell lysis by assay of the release of deoxyribonucleic acid or ribonucleic acid (RNA), respectively. Biochemical analyses demonstrated that, although human or hen egg white lysozymes alone did not release deoxyribonucleic acid or RNA, the nucleic acids were liberated in equal amounts from lysozyme-treated cells by the addition of low concentrations of the sodium salts of HCO-3, SCN-, Cl-, and F-, RNA release was dependent on enzyme and anion concentration. Human lysozyme was more potent than hen egg white lysozyme, and bicarbonate was the most effective anion in promoting bacteriolysis. Surprisingly, ultrastructural analyses differed from biochemical results. Lysozyme alone caused lysis in approximately 40% of the cell population. Detailed ultrastructural examination revealed aggregated cytoplasmic components which appeared as small clumps, explaining why nucleic acids were not measurable in the biochemical assays. In reaction mixtures containing lysozyme plus inorganic salts, electron microscopy results were compatible with biochemical data. Ultrastructural studies demonstrated that the addition of inorganic salts to lysozyme-treated cells resulted in the solubilization of the protoplasmic aggregates of lysed cells, presumably freeing the complexed RNA, and in the rapid lysis of the remaining cells (approximately 60%). These data suggest that electron microscopy must be used in conjunction with biochemical assays to assess lytic damage of bacterial cells.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Genus Veillonella;The Prokaryotes;2006

2. Strategies for New Antimicrobial Proteins and Peptides: Lysozyme and Aprotinin as Model Molecules;Current Pharmaceutical Design;2002-04-01

3. The role of saliva in maintaining oral homeostasis;The Journal of the American Dental Association;1989-08

4. Proteins in Whey: Chemical, Physical, and Functional Properties;Advances in Food and Nutrition Research;1989

5. Bacteriolytic Activity of Lysozyme in the Nasal Mucosa;Auris Nasus Larynx;1986-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3