Active viral infection during blooms of a dinoflagellate indicates dinoflagellate-viral co-adaptation

Author:

Wang Jingtian1ORCID,Li Ling1,Lin Senjie12ORCID

Affiliation:

1. State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, and College of Ocean and Earth Sciences, Xiamen University , Xiamen, China

2. Department of Marine Sciences, University of Connecticut , Groton, Connecticut, USA

Abstract

ABSTRACT Viruses are generally believed to cause cell mortality and terminate algal blooms. However, how the dinoflagellate-virus interaction shapes the dynamics of host dinoflagellate blooms remains poorly understood. Here, we profile viral composition and metabolic landscape in two blooms of the widely distributed dinoflagellate Prorocentrum shikokuense . Our data show that P. shikokuense was infected dominantly by Mimiviridae and Phycodnaviridae viruses in both blooms. Strikingly, these viruses were transcriptionally very active during the bloom that extended for weeks, suggesting a paralleled development of both the bloom and chronic infection. Furthermore, our data indicate that these viruses maintained a stable infection process by generating polymorphic variants to sustain the exploitation of host intracellular machinery, suggesting co-adaptation between the viruses and the bloom-causative dinoflagellate. This novel insight will be valuable for fully understanding and modeling the role of viruses in regulating blooms of dinoflagellates and other algae. IMPORTANCE This study represents the first that investigates in situ virus infection in dinoflagellate blooms. Our findings reveal highly similar viral assemblages that infected the bloom species Prorocentrum shikokuense and a co-adapted metabolic relationship between the host and the viruses in the blooms, which varied between the prolonged and the short-lived blooms of the same dinoflagellate species. These findings fill the gap in knowledge regarding the identity and behavior of viruses in a dinoflagellate bloom and shed light on what appears to be the complex mode of infection. The novel insight will be potentially valuable for fully understanding and modeling the role of viruses in regulating blooms of dinoflagellates and other algae.

Funder

MOST | National Natural Science Foundation of China

Marine S&T Fund of Shandong Province

Gordon and Betty Moore Foundation

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3