Modification of Asparagine-Linked Glycan Density for the Design of Hepatitis B Virus Virus-Like Particles with Enhanced Immunogenicity

Author:

Hyakumura Michiko1,Walsh Renae2,Thaysen-Andersen Morten3,Kingston Natalie J.1,La Mylinh4,Lu Louis4,Lovrecz George4,Packer Nicolle H.3,Locarnini Stephen2,Netter Hans J.1

Affiliation:

1. Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia

2. Victorian Infectious Diseases Reference Laboratory, Melbourne, VIC, Australia

3. Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia

4. Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia

Abstract

ABSTRACT The small envelope proteins (HBsAgS) derived from hepatitis B virus (HBV) represent the antigenic components of the HBV vaccine and are platforms for the delivery of foreign antigenic sequences. To investigate structure-immunogenicity relationships for the design of improved immunization vectors, we have generated biochemically modified virus-like particles (VLPs) exhibiting glycoengineered HBsAgS. For the generation of hypoglycosylated VLPs, the wild-type (WT) HBsAgS N146 glycosylation site was converted to N146Q; for constructing hyperglycosylated VLPs, potential glycosylation sites were introduced in the HBsAgS external loop region at positions T116 and G130 in addition to the WT site. The introduced T116N and G130N sites were utilized as glycosylation anchors resulting in the formation of hyperglycosylated VLPs. Mass spectroscopic analyses showed that the hyperglycosylated VLPs carry the same types of glycans as WT VLPs, with minor variations regarding the degree of fucosylation, bisecting N -acetylglucosamines, and sialylation. Antigenic fingerprints for the WT and hypo- and hyperglycosylated VLPs using a panel of 19 anti-HBsAgS monoclonal antibodies revealed that 15 antibodies retained their ability to bind to the different VLP glyco-analogues, suggesting that the additional N -glycans did not shield extensively for the HBsAgS-specific antigenicity. Immunization studies with the different VLPs showed a strong correlation between N -glycan abundance and antibody titers. The T116N VLPs induced earlier and longer-lasting antibody responses than did the hypoglycosylated and WT VLPs. The ability of nonnative VLPs to promote immune responses possibly due to differences in their glycosylation-related interaction with cells of the innate immune system illustrates pathways for the design of immunogens for superior preventive applications. IMPORTANCE The use of biochemically modified, nonnative immunogens represents an attractive strategy for the generation of modulated or enhanced immune responses possibly due to differences in their interaction with immune cells. We have generated virus-like particles (VLPs) composed of hepatitis B virus envelope proteins (HBsAgS) with additional N -glycosylation sites. Hyperglycosylated VLPs were synthesized and characterized, and the results demonstrated that they carry the same types of glycans as wild-type VLPs. Comparative immunization studies demonstrated that the VLPs with the highest N -glycan density induce earlier and longer-lasting antibody immune responses than do wild-type or hypoglycosylated VLPs, possibly allowing reduced numbers of vaccine injections. The ability to modulate the immunogenicity of an immunogen will provide opportunities to develop optimized vaccines and VLP delivery platforms for foreign antigenic sequences, possibly in synergy with the use of suitable adjuvanting compounds.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3