Properties of a 72-kilodalton mosquitocidal protein from Bacillus thuringiensis subsp. morrisoni PG-14 expressed in B. thuringiensis subsp. kurstaki by using the shuttle vector pHT3101

Author:

Chang C1,Dai S M1,Frutos R1,Federici B A1,Gill S S1

Affiliation:

1. Department of Entomology, University of California, Riverside 92521.

Abstract

The mosquitocidal properties of Bacillus thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni PG-14 are attributable to protein inclusions grouped together within a parasporal body. In both of these strains, the mosquitocidal activity resides in proteins with molecular masses of 27, 72, 128, and 135 kDa. In an attempt to determine the toxicity of each protein, the shuttle vector pHT3101 was used to express the cryIVD gene (encoding the 72-kDa CryIVD protein) from B. thuringiensis subsp. morrisoni in an acrystalliferous mutant of B. thuringiensis subsp. kurstaki. With this system, parasporal inclusions of the 72-kDa protein were obtained that were comparable in size, shape, and toxicity to those produced by parental B. thuringiensis subsp. morrisoni. The inclusions were bar shaped, measured 500 by 300 by 150 nm, and were easily visible with phase-contrast microscopy by 16 h of cell growth. A 50% lethal concentration of 64 ng/ml for these inclusions was determined in bioassays against fourth instars of Culex quinquefasciatus, which was similar to the 50% lethal concentration of 55 ng/ml obtained for the 72-kDa inclusion from B. thuringiensis subsp. israelensis. In contrast, expression of the cryIVD gene in Escherichia coli was very low and only detectable by immunoblot analysis. These results demonstrate that the pHT3101-B. thuringiensis expression system can be used to express the CryIVD protein in quantities and with properties comparable to that obtained with the natural host. This system may prove useful for the expression of other B. thuringiensis proteins and, in particular, for reconstitution experiments with inclusions produced by the mosquitocidal subspecies of B. thuringiensis.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3