New mechanism for methicillin resistance in Staphylococcus aureus: clinical isolates that lack the PBP 2a gene and contain normal penicillin-binding proteins with modified penicillin-binding capacity

Author:

Tomasz A1,Drugeon H B1,de Lencastre H M1,Jabes D1,McDougall L1,Bille J1

Affiliation:

1. Rockefeller University, New York, New York 10021.

Abstract

Seventeen clinical isolates of Staphylococcus aureus (from the United States and Europe) selected for low (borderline)-level methicillin resistance (MIC of methicillin, 2 to 4 micrograms/ml; MIC of oxacillin, 0.5 to 8 micrograms/ml) were examined for their mechanisms of resistance. Five strains were typical of heterogeneous S. aureus: they gave positive reactions with a DNA probe specific for mec and contained a small fraction (10(-6] of highly resistant cells (MIC, greater than 100 micrograms/ml). The rest of the 12 strains were homogeneous with respect to their methicillin resistance: the MIC of methicillin for all cells was 2 to 4 micrograms/ml, and no cells for which MICs were 50 micrograms/ml or higher were detectable (less than 10(-9]. None of these strains reacted with the mec-specific DNA probe. One representative strain of each group was characterized in more detail. Strain CDC-1, prototype of heterogeneous methicillin-resistant S. aureus, contained penicillin-binding protein (PBP) 2a; its DNA could transform a methicillin-susceptible and novobiocin-resistant recipient to methicillin resistance with ca. 35% linkage to Novr. Introduction of the "factor X" determinant (K. Murakami and A. Tomasz, J. Bacteriol. 171:874-879, 1989) converted strain CDC-1 to high, homogeneous resistance. Strain CDC-6, prototype of the second group of isolates, showed completely homogeneous MICs of methicillin, oxacillin, and cefotaxime. The strain contained modified "normal" PBPs: PBPs 1 and 2 showed low drug reactivity (and/or cellular amounts), and PBP 4 was present in elevated amounts. No PBP 2a could be detected. DNA isolated from strain CDC-6 could transform the methicillin-susceptible and novobiocin-resistant strain to methicillin resistance in a multistep fashion, but this resistance showed no genetic linkage to the Nov marker. We suggest that staphylococci with borderline resistance may contain at least three different classes of mechanism: heterogeneous, methicillin-resistant S. aureus, PBPs of modified drug reactivities, and the previously reported hyperproduction of beta-lactamase (L.K. McDougal and C. Thornsberry, J. Clin Microbiol. 23:832-839, 1986).

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3