Expression of methicillin resistance in heterogeneous strains of Staphylococcus aureus

Author:

Hartman B J,Tomasz A

Abstract

The phenotypic expression of methicillin resistance was studied in a number of clinical isolates and laboratory strains of Staphylococcus aureus. The methicillin-resistant S. aureus strains could be divided into three classes, homogeneous, heterogeneous, and thermosensitive heterogeneous methicillin-resistant S. aureus, on the basis of their plating efficiencies at 30 or 37 degrees C on methicillin-containing agar plates. Heterogeneous strains of methicillin-resistant S. aureus were composed of two subpopulations: a small minority of cells (10(-5) to 10(-3); MIC, 600 to 1,000 micrograms/ml) that expressed resistance to high concentrations of methicillin at 37 degrees C, and a majority of cells (MIC, 5 micrograms/ml) that remained susceptible to the drug at 37 degrees C. Cultures of a thermosensitive heterogeneous strain were able to grow in the presence of high concentrations of methicillin, provided that the growth temperature was 30 degrees C. Such cultures lost their phenotypic resistance within 30 min (i.e., in less than one doubling time) after the growth temperature was shifted to the nonpermissive 37 degrees C. Shift of the temperature of the culture in the reverse direction (37 to 30 degrees C) resulted in an equally rapid expression of phenotypic resistance. The majority of the cells in such heterogeneous strains may be considered heat (or salt) conditional in their phenotypic expression of methicillin resistance. Both heterogeneous and thermosensitive heterogeneous strains, irrespective of their temperature of cultivation and degree of phenotypic resistance, contained detectable quantities of the 78-kilodalton penicillin-binding protein 2a (PBP 2a) that previous studies have suggested is a biochemical correlate of methicillin resistance in homogeneous strains of methicillin-resistant S. aureus. However, in contrast to the homogeneous stains, in heterogeneous and thermosensitive heterogeneous isolates the ability to synthesize PBP 2a is apparently not sufficient to provide a resistant phenotype. In these strains some additional, as yet undefined factor(s) is also needed for the expression of methicillin resistance.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3