Abstract
The assumption that carbon and soil water content are major determinants of microbial community structure and function is rarely questioned because of substantial evidence of the impacts of these variables on specific populations and functions. The significance of carbon and water for metabolic diversity at the microbial community level was tested on the field scale in agricultural plots varying in carbon inputs and in whether they were flooded. Surface soils in which rice straw was incorporated or burned and which were flooded or unflooded were sampled at monthly intervals three times during the flooded winter period (January to March) and again 1 month postdraining. Biomass carbon and nitrogen were not affected by treatments, active bacterial counts showed slight increases, and respiration rates were increased by carbon inputs and flooding. Biolog microplates were inoculated with soil extracts to quantify the metabolic diversity of the soil microbial community. Canonical correspondence analysis and the Monte Carlo permutation testing showed that differences in substrate utilization patterns were significantly related (P < 0.001) to carbon and flooding treatments. Biolog substrates whose metabolism was altered by the treatments were consistent across dates and tended to be positively related (utilization enhancement) to carbon inputs and negatively related to winter flooding. The importance of carbon as an environmental variable increased over time after straw treatment, whereas the importance of water became evident after flooding and decreased after drainage. The effect of long-term rice straw incorporation on substrate utilization patterns at another field site was consistent with these results despite the dissimilarities of the two soils.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
268 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献