Effects of electron donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens 200

Author:

Picardal F1,Arnold R G1,Huey B B1

Affiliation:

1. Department of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson 85721.

Abstract

Shewanella putrefaciens 200 is a nonfermentative bacterium that is capable of dehalogenating tetrachloromethane to chloroform and other, unidentified products under anaerobic conditions. Since S. putrefaciens 200 can respire anaerobically by using a variety of terminal electron acceptors, including NO3-, NO2-, and Fe(III), it provides a unique opportunity to study the competitive effects of different electron acceptors on dehalogenation in a single organism. The results of batch studies showed that dehalogenation of CT by S. putrefaciens 200 was inhibited by O2, 10 mM NO3-, and 3 mM NO2-, but not by 15 mM Fe(III), 15 mM fumarate, or 15 mM trimethylamine oxide. Using measured O2, Fe(III), NO2-, and NO3- reduction rates, we developed a speculative model of electron transport to explain inhibition patterns on the basis of (i) the kinetics of electron transfer at branch points in the electron transport chain, and (ii) possible direct inhibition by nitrogen oxides. In additional experiments in which we used 20 mM lactate, 20 mM glucose, 20 mM glycerol, 20 mM pyruvate, or 20 mM formate as the electron donor, dehalogenation rates were independent of the electron donor used. The results of other experiments suggested that sufficient quantities of endogenous substrates were present to support transformation of tetrachloromethane even in the absence of an exogenous electron donor. Our results should be significant for evaluating (i) the bioremediation potential at sites contaminated with both halogenated organic compounds and nitrogen oxides, and (ii) the bioremediation potential of iron-reducing bacteria at contaminated locations containing significant amounts of iron-bearing minerals.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3