Affiliation:
1. School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-3501.
Abstract
Tetrachloroethene, also known as perchloroethylene, was reductively dechlorinated to trichloroethene and cis-1,2-dichloroethene by laboratory sulfate-reducing enrichment cultures. The causative organism or group was not identified. However, tetrachloroethene was dechlorinated to trichloroethene in 50 mM bromoethane-sulfonate-inhibited enrichments and to trichloroethene and cis-1,2-dichloroethene in 3 mM fluoroacetate-inhibited enrichments. Overall transformation varied from 92% tetrachloroethene removal in 13 days to 22% removal in 65 days, depending on conditions of the inoculum, inhibitor used, and auxilliary substrate used. Neither lactate, acetate, methanol, isobutyric acid, valeric acid, isovaleric acid, hexanoic acid, succinic acid, nor hydrogen appeared directly to support tetrachloroethene dechlorination, although lactate-fed inocula demonstrated longer-term dechlorinating capability.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
126 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献