Invasion and Intracellular Development of the Human Granulocytic Ehrlichiosis Agent in Tick Cell Culture

Author:

Munderloh Ulrike G.1,Jauron Steven D.1,Fingerle Volker2,Leitritz Lorenz2,Hayes S. Fred3,Hautman Joan M.1,Nelson Curtis M.4,Huberty Brent W.4,Kurtti Timothy J.1,Ahlstrand Gilbert G.5,Greig Barbara6,Mellencamp Martha A.7,Goodman Jesse L.4

Affiliation:

1. Departments of Entomology,1

2. Max von Pettenkofer Institut,2 Universität München, Munich, Germany

3. Rocky Mountain Laboratory, National Institutes of Health, Hamilton, Montana,3 and

4. Division of Infectious Diseases, Department of Medicine,4 and

5. Plant Pathology,5 and

6. Veterinary Diagnostic Laboratories,6 University of Minnesota, St. Paul, Minnesota,

7. Clinical and Population Sciences7 and

Abstract

ABSTRACT Human granulocytotropic ehrlichias are tick-borne bacterial pathogens that cause an acute, life-threatening illness, human granulocytic ehrlichiosis (HGE). Ehrlichias within neutrophil granulocytes that invade tick bite sites are likely ingested by the vector, to be transmitted to another mammalian host during the tick’s next blood meal. Thus, the cycle of replication and development in the vector is prerequisite to mammalian infection, and yet these events have not been described. We report tick cell culture isolation of two strains of the HGE agent directly from an infected horse and a dog and have also established a human isolate from HL60 culture in tick cells, proving that the blood stages of the HGE agent are infectious for tick cells, as are those replicating in the human cell line HL60. This required changes to the culture system, including a new tick cell line. In tick cell layers, the HGE agent induced foci of infection that caused necrotic plaques and eventual destruction of the culture. Using the human isolate and electron microscopy, we monitored adhesion, internalization, and replication in vector tick cells. Both electron-lucent and -dense forms adhered to and entered cells by a mechanism reminiscent of phagocytosis. Ehrlichial cell division was initiated soon after, resulting in endosomes filled with numerous ehrlichias. During early development, pale ehrlichias with a tight cell wall dominated, but by day 2, individual bacteria condensed into dark forms with a rippled membrane. These may become compacted into clumps where individual organisms are barely discernible. Whether these are part of an ehrlichia life cycle or are degenerating is unknown.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3