Control of Nitrogen Catabolite Repression Is Not Affected by the tRNA Gln-CUU Mutation, Which Results in Constitutive Pseudohyphal Growth of Saccharomyces cerevisiae

Author:

Beeser Alexander E.1,Cooper Terrance G.1

Affiliation:

1. Department of Microbiology and Immunology, University of Tennessee, Memphis, Tennessee 38163

Abstract

ABSTRACT Saccharomyces cerevisiae responds to nitrogen availability in several ways. (i) The cell is able to distinguish good nitrogen sources from poor ones through a process designated nitrogen catabolite repression (NCR). Good and poor nitrogen sources do not demonstrably affect the cell cycle other than to influence the cell’s doubling time. (ii) Nitrogen starvation promotes the initiation of sporulation and pseudohyphal growth. (iii) Nitrogen starvation strongly affects the cell cycle; nitrogen-starved cells arrest in G 1 . A specific allele of the SUP70/CDC65 tRNA Gln gene ( sup70-65 ) has been reported to be defective in nitrogen signaling associated with pseudohyphal formation, sporulation, and NCR. Our data confirm that pseudohyphal growth occurs gratuitously in sup70-65 mutants cultured in nitrogen-rich medium at 30°C. However, we find neither any defect in NCR in the sup70-65 mutant nor any alteration in the control of YVH1 expression, which has been previously shown to be specifically induced by nitrogen starvation.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3