Affiliation:
1. Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA.
Abstract
The expression of many nitrogen catabolic genes decreases to low levels when readily used nitrogen sources (e.g., asparagine and glutamine) are provided in the growth medium; this physiological response is termed nitrogen catabolite repression (NCR). Transcriptional activation of these genes is mediated by the cis-acting element UASNTR and the trans-acting factor Gln3p. A second protein encoded by URE2 possesses the genetic characteristics of a negative regulator of nitrogen catabolic gene expression. A third locus, DAL80, encodes a repressor that binds to sequences required for Gln3p-dependent transcription and may compete with Gln3p for binding to them. These observations are consistent with an NCR regulatory pathway with the structure environmental signal-->Ure2p-->(Gln3p/Dal80p)-->UASNTR operation-->NCR-sensitive gene expression. If NCR-sensitive gene expression occurs exclusively by this pathway, as has been thought to be the case, then the NCR sensitivity of a gene's expression should be abolished by a ure2 delta mutation. This expectation was not realized experimentally; the responses of highly NCR-sensitive genes to ure2 delta mutations varied widely. This suggested that NCR was not mediated exclusively through Ure2p and Gln3p. We tested this idea by assaying GAP1, CAN1, DAL5, PUT1, UGA1, and GLN1 expression in single, double, and triple mutants lacking Gln3p, Dal80p, and/or Ure2p. All of these genes were expressed in the triple mutant, and this expression was NCR sensitive for four of the six genes. These results indicate that the NCR regulatory network consists of multiple branches, with the Ure2p-Gln3p-UASNTR pathway representing only one of them.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献