Kinetics-based inference of environment-dependent microbial interactions and their dynamic variation

Author:

Song Hyun-Seob12ORCID,Lee Na-Rae3ORCID,Kessell Aimee K.1ORCID,McCullough Hugh C.1,Park Seo-Young4ORCID,Zhou Kang5,Lee Dong-Yup4ORCID

Affiliation:

1. Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

2. Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

3. Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul, South Korea

4. School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, South Korea

5. Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore

Abstract

ABSTRACT Microbial communities in nature are dynamically evolving as member species change their interactions subject to environmental variations. Accounting for such context-dependent dynamic variations in interspecies interactions is critical for predictive ecological modeling. In the absence of generalizable theoretical foundations, we lack a fundamental understanding of how microbial interactions are driven by environmental factors, significantly limiting our capability to predict and engineer community dynamics and function. To address this issue, we propose a novel theoretical framework that allows us to represent interspecies interactions as an explicit function of environmental variables (such as substrate concentrations) by combining growth kinetics and a generalized Lotka-Volterra model. A synergistic integration of these two complementary models leads to the prediction of alterations in interspecies interactions as the outcome of dynamic balances between positive and negative influences of microbial species in mixed relationships. The effectiveness of our method was experimentally demonstrated using a synthetic consortium of two Escherichia coli mutants that are metabolically dependent (due to an inability to synthesize essential amino acids) but competitively grow on a shared substrate. The analysis of the E. coli binary consortium using our model not only showed how interactions between the two amino acid auxotrophic mutants are controlled by the dynamic shifts in limiting substrates but also enabled quantifying previously uncharacterizable complex aspects of microbial interactions, such as asymmetry in interactions. Our approach can be extended to other ecological systems to model their environment-dependent interspecies interactions from growth kinetics. IMPORTANCE Modeling environment-controlled interspecies interactions through separate identification of positive and negative influences of microbes in mixed relationships is a new capability that can significantly improve our ability to understand, predict, and engineer the complex dynamics of microbial communities. Moreover, the prediction of microbial interactions as a function of environmental variables can serve as valuable benchmark data to validate modeling and network inference tools in microbial ecology, the development of which has often been impeded due to the lack of ground truth information on interactions. While demonstrated against microbial data, the theory developed in this work is readily applicable to general community ecology to predict interactions among macroorganisms, such as plants and animals, as well as microorganisms.

Funder

National Research Foundation of Korea

MAFRA | Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry

Nebraska Tobacco Settlement Biomedical Research Development Fund

National Science Foundation

Publisher

American Society for Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3