Circulation of enterotoxigenic Escherichia coli (ETEC) isolates expressing CS23 from the environment to clinical settings

Author:

Calderon Toledo Carla1ORCID,von Mentzer Astrid234ORCID,Agramont Jorge1,Thorell Kaisa5ORCID,Zhou Yingshun6,Szabó Miklós7,Colque Patricia7,Kuhn Inger7,Gutiérrez-Cortez Sergio1ORCID,Joffré Enrique7ORCID

Affiliation:

1. Unidad de Microbiología Ambiental, Instituto de Biología Molecular y Biotecnología (IBMB), Carrera de Biología, Universidad Mayor de San Andrés , La Paz, Bolivia

2. Wellcome Sanger Institute, Hinxton , Cambridge, United Kingdom

3. Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden

4. Mathematical Sciences, Chalmers University of Technology , Gothenburg, Sweden

5. Department of Chemistry and Molecular Biology (CMB), University of Gothenburg , Gothenburg, Sweden

6. Department of Pathogen Biology, The public platform of the Pathogen Biology, School of Basic Medicine, Southwest Medical University , Luzhou, Sichuan, China

7. Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet , Stockholm, Sweden

Abstract

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of infant diarrhea in low- and middle-income countries (LMICs). Diarrheal pathogens are transmitted through environmental reservoirs; however, the bacterial clones that spread across the human-environment interface remain unexplored. We aimed to determine the relationship and clonal dissemination of ETEC between children with diarrhea and polluted water samples from a local river in La Paz, Bolivia. By using WGS and the PhenePlates phenotypic system to analyze ETEC strains, we showed that ST218 and ST410 LT+STh ETEC expressing the colonization factor (CF) CS23 were found with high frequency in both samples. The CS23 ETEC isolates were found within several STs, E. coli phylogroups, and across ETEC lineages. Comparative genomic evaluation and PhenePlate screening of globally distributed clinical ETEC strains suggest that the CS23 gene is likely carried on plasmids acquired independently of the bacterial chromosomal background. Clinical strains were more often multidrug-resistant (MDR) than environmental isolates and harbored the class 1 integron-integrase gene intI1 next to the MDR cassettes. Retrospective analysis of antibiotic resistance in ETEC revealed a high frequency of MDR in clinical isolates. The LT+STh CS23 environmental ETEC isolates, showed an increased biofilm ability at environmental temperature, equal cytotoxicity, and significantly lower adherence to human epithelial cells compared to ETEC expressing other CFs. Together, we suggest that CS23 is more prevalent in ETEC than previously estimated, and the Choqueyapu River is a reservoir for LT+STh CS23 ETEC containing strains capable of causing diarrheal cases in children. IMPORTANCE The importance of clean water cannot be overstated. It is a vital resource for maintaining health and well-being. Unfortunately, water sources contaminated with fecal discharges from animal and human origin due to a lack of wastewater management pose a significant risk to communities, as they can become a means of transmission of pathogenic bacteria like enterotoxigenic E. coli (ETEC). ETEC is frequently found in polluted water in countries with a high prevalence of diarrheal diseases, such as Bolivia. This study provides novel insights into the circulation of ETEC between diarrheal cases and polluted water sources in areas with high rates of diarrheal disease. These findings highlight the Choqueyapu River as a potential reservoir for emerging pathogens carrying antibiotic-resistance genes, making it a crucial area for monitoring and intervention. Furthermore, the results demonstrate the feasibility of a low-cost, high-throughput method for tracking bacterial pathogens in low- and middle-income countries, making it a valuable tool for One Health monitoring efforts.

Funder

Vetenskapsrådet

Svenska Sällskapet för Medicinsk Forskning

Impuesto Directo a los Hidrocarburos

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3