Mobilome-driven partitions of the resistome in Salmonella

Author:

Jia Chenghao12,Wang Zining123,Huang Chenghu123,Teng Lin12,Zhou Haiyang123,An Hongli123,Liao Sihao12,Liu Yuhao123,Huang Linlin12,Tang Biao4ORCID,Yue Min1235ORCID

Affiliation:

1. Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China

2. Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China

3. Hainan Institute of Zhejiang University, Sanya, China

4. State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China

5. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China

Abstract

ABSTRACT Mobile genetic elements (MGEs) or mobilomes promote the mobilization and dissemination of antimicrobial resistance genes (ARGs), serving as critical drivers for antimicrobial resistance (AMR) accumulation, interaction, and persistence. However, systematic and quantitative evaluations of the role of mobilome in spreading resistome in a bacterial pathogen remain unaddressed, partially due to the lack of closed genomes. Here, we examined MGEs across 1,817 Salmonella isolates with complete genomic sequences from 58 countries between 1911 and 2022. We found the plasmid harboring 69.8% ARGs to be the largest ARG reservoir, correlated with serovar-based evolution in most Salmonella lineages. Prophages, specifically RCS47 and SJ46, play a crucial role in the plasmids’ plasticity and the acquisition of ARGs. Furthermore, distinct ARG accumulation, including resistance toward last-resort antibiotics, exhibited an MGE-favored manner. Certain socioeconomic and ecological factors, as additional layers of mediators, are associated with the preferential distribution of MGE-mediated ARGs in Salmonella . Collectively, this study demonstrated an uncharted knowledge of the segmentation of Salmonella resistome driven by mobilome, elucidating dynamic drivers and distinct mediators for resistome development that are of immediate relevance for targeted interventions. IMPORTANCE Antimicrobial resistance (AMR) has become a significant global challenge, with an estimated 10 million deaths annually by 2050. The emergence of AMR is mainly attributed to mobile genetic elements (MGEs or mobilomes), which accelerate wide dissemination among pathogens. The interaction between mobilomes and AMR genes (or resistomes) in Salmonella , a primary cause of diarrheal diseases that results in over 90 million cases annually, remains poorly understood. The available fragmented or incomplete genomes remain a significant limitation in investigating the relationship between AMR and MGEs. Here, we collected the most extensive closed Salmonella genomes ( n = 1,817) from various sources across 58 countries. Notably, our results demonstrate that resistome transmission between Salmonella lineages follows a specific pattern of MGEs and is influenced by external drivers, including certain socioeconomic factors. Therefore, targeted interventions are urgently needed to mitigate the catastrophic consequences of Salmonella AMR.

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3