Effect of aridity on the β-diversity of alpine soil potential diazotrophs: insights into community assembly and co-occurrence patterns

Author:

Lei Shilong123,Wang Xiangtao4,Wang Jie5,Zhang Lu6,Liao Lirong123,Liu Guobin123,Wang Guoliang67,Song Zilin8,Zhang Chao126ORCID

Affiliation:

1. The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China

2. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China

3. University of Chinese Academy of Sciences, Beijing, China

4. College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, China

5. College of Forestry, Guizhou University, Guiyang, China

6. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China

7. Institute of Soil and Water Conservation, Chinese Academy of Science, Yangling, Shaanxi, China

8. College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China

Abstract

ABSTRACT Microbial diversity plays a vital role in the maintenance of ecosystem functions. However, the current understanding of mechanisms that shape microbial diversity along environmental gradients at broad spatial scales is relatively limited, especially for specific functional groups, such as potential diazotrophs. Here, we conducted an aridity-gradient transect survey from 60 sites across the Tibetan Plateau, the largest alpine ecosystem of the planet, to investigate the ecological processes (e.g., local species pools, community assembly processes, and co-occurrence patterns) that underlie the β-diversity of alpine soil potential diazotrophic communities. We found that aridity strongly and negatively affected the abundance, richness, and β-diversity of soil diazotrophs. Diazotrophs displayed a distance-decay pattern along the aridity gradient, with organisms living in lower aridity habitats having a stronger distance-decay pattern. Arid habitats had lower co-occurrence complexity, including the number of edges and vertices, the average degree, and the number of keystone taxa, as compared with humid habitats. Local species pools explained limited variations in potential diazotrophic β-diversity. In contrast, co-occurrence patterns and stochastic processes (e.g., dispersal limitation and ecological drift) played a significant role in regulating potential diazotrophic β-diversity. The relative importance of stochastic processes and co-occurrence patterns changed with increasing aridity, with stochastic processes weakening whereas that of co-occurrence patterns enhancing. The genera Geobacter and Paenibacillus were identified as keystone taxa of co-occurrence patterns that are associated with β-diversity. In summary, aridity affects the co-occurrence patterns and community assembly by regulating soil and vegetation characteristics and ultimately shapes the β-diversity of potential diazotrophs. These findings highlight the importance of co-occurrence patterns in structuring microbial diversity and advance the current understanding of mechanisms that drive belowground communities. IMPORTANCE Recent studies have shown that community assembly processes and species pools are the main drivers of β-diversity in grassland microbial communities. However, co-occurrence patterns can also drive β-diversity formation by influencing the dispersal and migration of species, the importance of which has not been reported in previous studies. Assessing the impact of co-occurrence patterns on β-diversity is important for understanding the mechanisms of diversity formation. Our study highlights the influence of microbial co-occurrence patterns on β-diversity and combines the drivers of community β-diversity with drought variation, revealing that drought indirectly affects β-diversity by influencing diazotrophic co-occurrence patterns and community assembly.

Funder

National Sciences Foundation of China

National Key Research and Development Program of China

the West Light Foundation of Chinese Academy of Science

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3