Affiliation:
1. Chongqing Key Laboratory of Childhood Nutrition and Health, Children’s Hospital of Chongqing Medical University , Chongqing, China
2. Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders , Chongqing, China
Abstract
ABSTRACT
Short-chain fatty acids (SCFAs, especially butyric acid) have been demonstrated to play a promising role in the development of autism spectrum disorders (ASD). Recently, the hypothalamic–pituitary–adrenal (HPA) axis is also suggested to increase the risk of ASD. However, the mechanism underlying SCFAs and HPA axis in ASD development remains unknown. Here, we show that children with ASD exhibited lower SCFA concentrations and higher cortisol levels, which were recaptured in prenatal lipopolysaccharide (LPS)-exposed rat model of ASD. These offspring also showed decreased SCFA-producing bacteria and histone acetylation activity as well as impaired corticotropin-releasing hormone receptor 2 (CRHR2) expression. Sodium butyrate (NaB), which can act as histone deacetylases inhibitors, significantly increased histone acetylation at the CRHR2 promoter
in vitro
and normalized the corticosterone as well as CRHR2 expression level
in vivo
. Behavioral assays indicated ameliorative effects of NaB on anxiety and social deficit in LPS-exposed offspring. Our results imply that NaB treatment can improve ASD-like symptoms via epigenetic regulation of the HPA axis in offspring; thus, it may provide new insight into the SCFA treatment of neurodevelopmental disorders like ASD.
IMPORTANCE
Growing evidence suggests that microbiota can affect brain function and behavior through the “microbiome–gut–brain’’ axis, but its mechanism remains poorly understood. Here, we show that both children with autism and LPS-exposed rat model of autism exhibited lower SCFA concentrations and overactivation of HPA axis. SCFA-producing bacteria,
Lactobacillus
, might be the key differential microbiota between the control and LPS-exposed offspring. Interestingly, NaB treatment contributed to the regulation of HPA axis (such as corticosterone as well as CRHR2) and improvement of anxiety and social deficit behaviors in LPS-exposed offspring. The potential underlying mechanism of the ameliorative effect of NaB may be mediated via increasing histone acetylation to the CRHR2 promoter. These results enhance our understanding of the relationship between the SCFAs and the HPA axis in the development of ASD. And gut microbiota-derived SCFAs may serve as a potential therapeutic agent to neurodevelopmental disorders like ASD.
Funder
MOST | National Natural Science Foundation of China
Publisher
American Society for Microbiology
Subject
Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献