Outbreak of NDM-5-producing Klebsiella pneumoniae ST307: an emerging high-risk antimicrobial resistance clone in Shanghai, China

Author:

Zhu Junying12ORCID,Wang Guangyu3,Li Min12ORCID

Affiliation:

1. Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

2. Faculty of Medical Laboratory Science, College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China

3. Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Abstract

ABSTRACT The high-risk clone Klebsiella pneumoniae ST307, associated with various carbapenem resistance genes, exhibits a global distribution and prevalence. However, in China, it has remained sporadic and has rarely been detected. In this study, we reported an outbreak caused by nine ST307 CRKP isolates harboring bla NDM-5 in Shanghai, China, in 2022. We employed antimicrobial susceptibility testing, conjugation assay, whole-genome sequencing (WGS) and comparative genomics, phylogenetic analysis, and fitness and virulence comparison to further characterize the isolates causing the outbreak. Besides bla NDM-5 , these nine isolates co-carried bla CTX-M-15 and bla DHA-1 , exhibiting nearly identical resistance profiles with high-level resistance to carbapenems and ceftazidime/avibactam, while showing susceptibility to colistin and tigecycline. bla NDM-5 was located on an IncX3 plasmid of 45,403 bp with a high frequency of conjugative ability. Phylogenetic and single-nucleotide polymorphism (SNP) analysis indicated the nature of clonal transmission with a maximum of five SNPs between these nine isolates, and they were closely related to strains obtained from the United States. ST307 isolates in our study showed a relatively lower virulence but higher growth rates and certain adaptability compared with ST11 isolates. Clinical investigation revealed that shared nursing staff in a mixed emergency intensive care unit ward and doctors’ movement between wards might be responsible for the outbreak. The nonexistence before and sudden emergence of ST307 suggested that the currently circulating ST307 clone was a newly introduced superbug in our hospital. In conclusion, we revealed that bla NDM-5 -producing ST307 CRKP isolates, a globally significant high-risk clone, are spreading in China, posing a substantial threat to public health. IMPORTANCE The high-risk clone ST307, associated with various carbapenemases, including KPC, NDM, and OXA, has a global distribution. However, it is rarely reported in China, let alone causing outbreaks. Here, we found an outbreak caused by the clonal transmission of nine ST307 CRKP isolates. Clinical investigation revealed that shared nurses in a mixed emergency intensive care unit ward and doctors’ movement between wards might be responsible for the outbreak. In our study, the nine NDM-5-producing ST307 isolates exhibited high-level resistance to carbapenems and ceftazidime-avibactam, high conjugative ability to Escherichia coli J53, and certain adaptability to environment, phylogenetically closet to the United States. All these features make ST307 clone the next successful clone comparable to ST11 clone in China. Therefore, it is imperative for us to vigilantly monitor the prevalence of carbapenem-resistant Klebsiella pneumoniae and promptly implement measures to control the spread of K. pneumoniae ST307 in China.

Funder

National Natural Science Foundation of China

National Key Research and Development Program

Publisher

American Society for Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3