Transmission of Monospecies and Dual-Species Biofilms from Smooth to Nanopillared Surfaces

Author:

Gusnaniar 1,Hizal Ferdi2,Choi Chang-Hwan2,Sjollema Jelmer1,Nuryastuti Titik3,Rustema-Abbing Minie1,Rozenbaum Rene T.1,van der Mei Henny C.1ORCID,Busscher Henk J.1,Wessel Stefan W.1

Affiliation:

1. University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, The Netherlands

2. Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey, United States

3. Department of Microbiology, Faculty of Medicine, Universitas Gadjah Mada, Farmako Sekip Utara, Yogyakarta, Indonesia

Abstract

Bacterial transmission from biofilm-covered surfaces to surfaces is mechanistically different from bacterial adhesion to surfaces and involves detachment from the donor and adhesion to the receiver surfaces under pressure. Bacterial transmission occurs, for instance, in food processing or packaging, in household situations, or between surfaces in hospitals. Patients admitted to a hospital room previously occupied by a patient with antibiotic-resistant pathogens are at elevated infection risk by the same pathogens through transmission. Nanopillared receiver surfaces did not collect less biofilm from a smooth donor than a smooth receiver, likely because the pressure applied during transmission negated the smaller contact area between bacteria and nanopillared surfaces, generally held responsible for reduced adhesion. Biofilm left behind on smooth donor surfaces of a non-extracellular-polymeric-substance (EPS)-producing strain and dual species had undergone different structural changes than an EPS-producing strain, which is important for their possible further treatment by antimicrobials or disinfectants.

Funder

European Commission

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3