Absence of Inflammation and Pneumonia during Infection with Nonpigmented Yersinia pestis Reveals a New Role for the pgm Locus in Pathogenesis

Author:

Lee-Lewis Hanni1,Anderson Deborah M.1

Affiliation:

1. Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri

Abstract

ABSTRACT Yersinia pestis causes primary pneumonic plague in many mammalian species, including humans, mice, and rats. Virulent Y. pestis strains undergo frequent spontaneous deletion of a 102-kb chromosomal DNA fragment, known as the pigmentation ( pgm ) locus, when grown in laboratory media, yet this locus is present in every virulent isolate. The pgm locus encodes, within a high-pathogenicity island, siderophore biosynthesis genes that are required for growth in the mammalian host when inoculated by peripheral routes. Recently, higher challenge doses of nonpigmented Y. pestis were reported to cause fatal pneumonic plague in mice, suggesting a useful model for studies of virulence and immunity. In this work, we show that intranasal infection of BALB/c mice with nonpigmented Yersinia pestis does not result in pneumonic plague. Despite persistent bacterial colonization of the lungs and the eventual death of infected mice, pulmonary inflammation was generally absent, and there was no disease pathology characteristic of pneumonic plague. Iron given to mice at the time of challenge, previously shown to enhance the virulence of pgm -deficient strains, resulted in an accelerated disease course, with less time to bacteremia and lethality, but lung inflammation and pneumonia were still absent. We examined other rodent models and found differences in lung inflammatory responses, some of which led to clearance and survival even when high challenge doses were used. Together, the results suggest that the Y. pestis pgm locus encodes previously unappreciated virulence factors required for the induction of pneumonic plague that are independent of iron scavenging from the mammalian host.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3