Protection from plague via single dose administration of antibody to neutralize the type I interferon response

Author:

Marks KD,Anderson DMORCID

Abstract

AbstractYersinia pestisis a gram-negative bacterium and the causative agent for the plague.Yersinia spp. use effector proteins of the type III secretion system (T3SS) to skew the host immune response toward a bacterial advantage during infection. Previous work established that mice which lack the type I IFN receptor (IFNAR), exhibit resistance to pulmonary infection byY. pestis. In this work, we addressed the efficacy of a single dose administration of neutralizing antibody to IFNAR (MAR1) as a preventive treatment for plague. We show that single dose administration of MAR1 provides protection from mortality due to secondary septicemic plague where it appears to reduce the production of serum TNFα during the disease phase. We further demonstrate that the T3SS effector protein YopJ is necessary for MAR1-induced protection, however IFNAR-dependent serum TNFα was observed independent of YopJ. We further define tissue-specific anti-bacterial roles of IFNAR that are blocked by YopJ activity indicating that YopJ and IFNAR work in parallel to promote disease. The combined data suggest that therapeutic targeting of IFNAR signaling may reduce the hyper-inflammatory response associated with plague.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3