Herpesvirus Saimiri STP-A Oncoprotein Utilizes Src Family Protein Tyrosine Kinase and Tumor Necrosis Factor Receptor-Associated Factors To Elicit Cellular Signal Transduction

Author:

Garcia Maria I.1,Kaserman Joseph1,Chung Young-Hwa2,Jung Jae U.1,Lee Sun-Hwa1

Affiliation:

1. Department of Microbiology and Molecular Genetics and Division of Tumor Virology, New England Primate Research Center, Harvard Medical School, 1 Pine Hill Drive, Southborough, Massachusetts 01772-9102

2. College of Nanoscience and Nanotechnology, Department of Nanomedical Engineering, Pusan National University, Pusan, Korea

Abstract

ABSTRACT The saimiri transforming protein oncogene, called STP-A, of herpesvirus saimiri (HVS) subgroup A is not required for viral replication but is required for lymphoid cell immortalization in culture and lymphoma induction in primates. Here we report that STP-A interacts with cellular tumor necrosis factor receptor-associated factors (TRAF2 and TRAF6) and Src family protein tyrosine kinases (SF-PTKs) in a genetically and functionally separable manner and that each interaction constitutively elicits independent cellular signal transduction. The amino-terminal and central proline-rich motifs of STP-A were responsible for TRAF6 and TRAF2 interactions, respectively, and STP-A and TRAF6 interaction contributed to the majority of NF-κB activation, whereas STP-A and TRAF2 interaction played a minor role in NF-κB activation. On the other hand, interaction of STP-A with SF-PTKs through its SH2 binding motif effectively elicited AP-1 and NF-AT transcription factor activity. One cellular gene targeted by STP-A is intercellular adhesion molecule 1 (ICAM-1), which participates in a wide range of inflammatory and immune responses. Both TRAF and SF-PTK signal transductions induced by STP-A were required for the marked increase of ICAM-1 expression. These results demonstrate that the viral oncogene STP-A independently targets two vital cellular signaling molecules and that these activities likely contribute to HVS-mediated lymphoid cell immortalization in culture and lymphoma induction in primates.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3