Three Arginine Residues within the RGG Box Are Crucial for ICP27 Binding to Herpes Simplex Virus 1 GC-Rich Sequences and for Efficient Viral RNA Export

Author:

Corbin-Lickfett Kara A.1,Souki Stuart K.1,Cocco Melanie J.2,Sandri-Goldin Rozanne M.1

Affiliation:

1. Departments of Microbiology and Molecular Genetics

2. Molecular Biology and Biochemistry, University of California, Irvine, California 92697

Abstract

ABSTRACT ICP27 is a multifunctional protein that is required for herpes simplex virus 1 mRNA export. ICP27 interacts with the mRNA export receptor TAP/NXF1 and binds RNA through an RGG box motif. Unlike other RGG box proteins, ICP27 does not bind G-quartet structures but instead binds GC-rich sequences that are flexible in structure. To determine the contribution of arginines within the RGG box, we performed in vitro binding assays with N-terminal proteins encoding amino acids 1 to 160 of wild-type ICP27 or arginine-to-lysine substitution mutants. The R138,148,150K triple mutant bound weakly to sequences that were bound by the wild-type protein and single and double mutants. Furthermore, during infection with the R138,148,150K mutant, poly(A) + RNA and newly transcribed RNA accumulated in the nucleus, indicating that viral RNA export was impaired. To determine if structural changes had occurred, nuclear magnetic resonance (NMR) analysis was performed on N-terminal proteins consisting of amino acids 1 to 160 from wild-type ICP27 and the R138,148,150K mutant. This region of ICP27 was found to be highly flexible, and there were no apparent differences in the spectra seen with wild-type ICP27 and the R138,148,150K mutant. Furthermore, NMR analysis with the wild-type protein bound to GC-rich sequences did not show any discernible folding. We conclude that arginines at positions 138, 148, and 150 within the RGG box of ICP27 are required for binding to GC-rich sequences and that the N-terminal portion of ICP27 is highly flexible in structure, which may account for its preference for binding flexible sequences.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3