Consequences of DNA-Dependent Protein Kinase Catalytic Subunit Deficiency on Recombinant Adeno-Associated Virus Genome Circularization and Heterodimerization in Muscle Tissue

Author:

Duan Dongsheng12,Yue Yongping1,Engelhardt John F.34

Affiliation:

1. Department of Molecular Microbiology and Immunology

2. Program in Molecular Biology, School of Medicine, The University of Missouri, Columbia, Missouri

3. Department of Anatomy and Cell Biology

4. Department of Internal Medicine and Gene Therapy Center, School of Medicine, The University of Iowa, Iowa City, Iowa

Abstract

ABSTRACT Circular concatemerization of the recombinant adeno-associated virus (rAAV) genome has been suggested as the predominant process facilitating long-term rAAV transduction in muscle. A recent study (S. Song, P. J. Laipis, K. I. Berns, and T. R. Flotte, Proc. Natl. Acad. Sci. USA 98:4084-4088, 2001) with SCID mice, which are defective in the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), has suggested that DNA-PKcs regulates the removal of free rAAV vector ends in muscle tissue. In the present study, we have sought to evaluate whether a lack of DNA-PKcs activity reduces circularization of rAAV genomes in SCID muscle and whether such a reduction alters the directivity of heterodimerization. Consistent with the previous report, linear rAAV genomes and free vector ends were detected only in DNA-PKcs-deficient muscle by Southern blotting. Appreciable amounts of circular rAAV genomes were detected in both DNA-PKcs-deficient and wild-type muscle samples by Southern blotting and bacterial trapping experiments. The existence of double-D inverted terminal repeat circular intermediates in SCID and wild-type muscles was also supported by their sensitivity to T7 endonuclease I digestion. However, DNA-PKcs-deficient muscle did demonstrate a ∼50% reduction in the abundance of rescued circular genomes, despite equivalent levels of single rAAV transduction seen in wild-type animals. Dual trans -splicing lacZ vectors were used to functionally evaluate directional head-to-tail intermolecular viral genome concatamerization in vivo. Although AAV genomes are processed differently in SCID and wild-type muscles, a comparable level of trans -splicing-mediated β-galactosidase expression was observed in both strains, suggesting that both circular and linear AAV concatemers may have contributed to the trans -splicing-mediated transgene expression. In summary, we have shown that SCID skeletal muscle retains a fairly high capacity to form circular genomes, despite a significant increase in linear vector genomes. Furthermore, the alteration in equilibrium between circular and linear concatemer genomes caused by the lack of DNA-PKcs activity does not appear to significantly affect the efficiency of dual-vector gene expression from head-to-tail linear and/or circular heterodimers.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3