Affiliation:
1. Centre for Virus Research, Westmead Millennium Institute and University of Sydney, Westmead, New South Wales 2145, Australia
Abstract
ABSTRACT
Mature dendritic cells (DCs) are potent antigen-presenting cells essential for initiating successful antiviral immune responses and would therefore serve as an ideal target for viruses seeking to evade or delay the immune response by disrupting their function. We have previously reported that VZV productively infects immature DCs (A. Abendroth, G. Morrow, A. L. Cunningham, and B. Slobedman, J. Virol. 75:6183-6192, 2001), and in the present study we assessed the ability of VZV to infect mature DCs. Mature DCs were generated from immature monocyte-derived DCs by lipopolysaccharide treatment before being exposed to VZV-infected fibroblasts. On day 4 postexposure, flow cytometry analysis revealed that 15 to 45% of mature DCs were VZV antigen positive, and immunofluorescent staining together with infectious-center assays demonstrated that these cells were fully permissive for the complete VZV replicative cycle. VZV infection of mature DCs resulted in a selective downregulation of cell surface expression of the functionally important immune molecules major histocompatibility complex (MHC) class I, CD80, CD83, and CD86 but did not alter MHC class II expression. Immunofluorescent staining showed that the downregulation of cell surface CD83 was concomitant with a retention of CD83 in cytoplasmic vesicles. Importantly, VZV infection of mature DCs significantly reduced their ability to stimulate the proliferation of allogeneic T lymphocytes. These data demonstrate that mature DCs are permissive for VZV and that infection of these cells reduces their ability to function properly. Thus, VZV has evolved yet another immune evasion strategy that would likely impair immunosurveillance and enhance the chances for lifelong persistence in the human population.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献