Controlled Expression of the Dominant Flocculation Genes FLO1 , FLO5 , and FLO11 in Saccharomyces cerevisiae

Author:

Govender Patrick12,Domingo Jody L.2,Bester Michael C.2,Pretorius Isak S.3,Bauer Florian F.2

Affiliation:

1. Department of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa

2. Institute for Wine Biotechnology, Faculty of AgriSciences, University of Stellenbosch, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa

3. The Australian Wine Research Institute, P.O. Box 197, Glen Osmond (Adelaide), South Australia 5064, Australia

Abstract

ABSTRACT In many industrial fermentation processes, the Saccharomyces cerevisiae yeast should ideally meet two partially conflicting demands. During fermentation, a high suspended yeast count is required to maintain a satisfactory rate of fermentation, while at completion, efficient settling is desired to enhance product clarification and recovery. In most fermentation industries, currently used starter cultures do not satisfy this ideal, probably because nonflocculent yeast strains were selected to avoid fermentation problems. In this paper, we assess molecular strategies to optimize the flocculation behavior of S. cerevisiae . For this purpose, the chromosomal copies of three dominant flocculation genes, FLO1 , FLO5 , and FLO11 , of the haploid nonflocculent, noninvasive, and non-flor-forming S. cerevisiae FY23 strain were placed under the transcriptional control of the promoters of the ADH2 and HSP30 genes. All six promoter-gene combinations resulted in specific flocculation behaviors in terms of timing and intensity. The strategy resulted in stable expression patterns providing a platform for the direct comparison and assessment of the specific impact of the expression of individual dominant FLO genes with regard to cell wall characteristics, such as hydrophobicity, biofilm formation, and substrate adhesion properties. The data also clearly demonstrate that the flocculation behavior of yeast strains can be tightly controlled and fine-tuned to satisfy specific industrial requirements.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3