In vitro assembly of infectious virions of double-stranded DNA phage phi 29 from cloned gene products and synthetic nucleic acids

Author:

Lee C S1,Guo P1

Affiliation:

1. Department of Pathobiology and Purdue Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA.

Abstract

Up to 6 x 10(7) PFU of infectious virions of the double-stranded DNA bacteriophage phi 29 per ml were assembled in vitro, with 11 proteins derived from cloned genes and nucleic acids synthesized separately. The genomic DNA-gp3 protein conjugate was efficiently packaged into a purified recombinant procapsid with the aid of a small viral RNA (pRNA) transcript, a DNA-packaging ATPase (gp16), and ATP. The DNA-filled capsids were subsequently converted into infectious virions after the addition of four more recombinant proteins for neck and tail assembly. Electron microscopy and genome restriction mapping confirmed the identity of the infectious phi 29 virions synthesized in this system. A nonstructural protein, gp13, was indispensable for the assembly of infectious virions. The overproduced tail protein gp9 was present in solution in mostly dimeric form and was purified to homogeneity. The purified gp9 was biologically active for in vitro phi 29 assembly. Higher-order concentration dependence of in vitro phi 29 assembly on gp9 suggests that a complete tail did not form before attaching to the DNA-filled capsid, a result contrary to earlier findings for phages T4 and lambda. The work described here constitutes an extremely sensitive assay system for the analysis of components in phi 29 assembly and dissection of functional domains of structural components, enzymes, and pRNA (C.-S. Lee and P. Guo, Virology 202:1039-1042, 1995). Efficient packaging of foreign DNA in vitro and synthesis of viral particles from recombinant proteins facilitate the development of phi 29 as an in vivo gene delivery system. The finding that purified tail protein was able to incorporate into infectious virions might allow the construction of chimeric phi 29 carrying a tail fused to ligands for specific receptor of human cells.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3