Location of DNA-binding proteins and disulfide-linked proteins in vaccinia virus structural elements

Author:

Ichihashi Y,Oie M,Tsuruhara T

Abstract

Treatment with sodium dodecyl sulfate (SDS) converted the vaccinia virus strain IHD-J into particles of two types: (i) ghosts which possessed a thin-membrane vesicle derived from basement part of the virus membrane with attached lateral bodies and a membranous structure derived from the core wall and (ii) aggregates of a DNA-nucleoprotein eluted from the core. These particles lacked lipids, and all the viral phospholipids were detected in the SDS-soluble fraction. The viral membrane was composed of an SDS-soluble coat layer and the basement membrane, and the basement membrane was maintained by a mechanism other than the lipid bilayer. By comparisons of protein species in morphologically distinct subviral particles prepared by several solubilizing methods, protein compositions of viral structural elements were suggested as follows: 25,000-molecular-weight viral protein-17,000-molecular-weight viral protein ( VP25K - VP17K ), viral basement membrane; VP13 . 8K , major component of the lateral body; VP70K , VP69K , VP66K , and VP64K , minor components of the lateral body; VP61K , outer layer of core wall; VP57K - VP22K , inner layer of core wall; and VP27K - VP13K , nucleoprotein. These structural elements found in the SDS-insoluble particles dissolved in the same SDS solution under reducing conditions, indicating that the disulfide linkages seem to have a principal role in maintaining their morphological integrity. VP57K , VP27K , VP13 . 8K , and VP13K were revealed to possess affinity for DNA. Denatured calf thymus DNA and viral DNA in double- or single-stranded form associated equally well with these proteins, but RNA did not bind. Therefore, it was strongly suggested that disulfide-linked VP27K - VP13K represented the nucleoproteins of vaccinia virus. A structural model of vaccinia virus is proposed and discussed.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3