Bile Salt Hydrolase Activity and Resistance to Toxicity of Conjugated Bile Salts Are Unrelated Properties in Lactobacilli

Author:

Moser Scott A.1,Savage Dwayne C.1

Affiliation:

1. Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996-0845

Abstract

ABSTRACT Bacteria of numerous species isolated from the human gastrointestinal tract express bile salt hydrolase (BSH) activity. How this activity contributes to functions of the microorganisms in the gastrointestinal tract is not known. We tested the hypothesis that a BSH protects the cells that produce it from the toxicity of conjugated bile salts. Forty-nine strains of numerous Lactobacillus spp. were assayed to determine their capacities to express BSH activities (taurodeoxycholic acid [TDCA] hydrolase and taurocholic acid [TCA] hydrolase activities) and their capacities to resist the toxicity of a conjugated bile acid (TDCA). Thirty of these strains had been isolated from the human intestine, 15 had been recovered from dairy products, and 4 had originated from other sources. Twenty-six of the strains expressed both TDCA hydrolase and TCA hydrolase activities. One strain that expressed TDCA hydrolase activity did not express TCA hydrolase activity. Conversely, in one strain for which the assay for TDCA hydrolase activity gave a negative result there was evidence of TCA hydrolase activity. Twenty-five of the strains were found to resist the toxicity of TDCA. Fourteen of these strains were of human origin, nine were from dairy products, and two were from other sources. Of the 26 strains expressing both TDCA hydrolase and TCA hydrolase activities, 15 were resistant to TDCA toxicity, 6 were susceptible, and 5 gave inconclusive results. Of the 17 strains that gave negative results for either of the enzymes, 7 were resistant to the toxicity, 9 were susceptible, and 1 gave inconclusive results. These findings do not support the hypothesis tested. They suggest, however, that BSH activity is important at some level for lactobacillus colonization of the human intestine.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3