Intrinsic Antimicrobial Resistance Determinants in the Superbug Pseudomonas aeruginosa

Author:

Murray Justine L.12,Kwon Taejoon1345,Marcotte Edward M.134,Whiteley Marvin132

Affiliation:

1. Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA

2. Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, USA

3. Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA

4. Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, USA

5. Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea

Abstract

ABSTRACT Antimicrobial-resistant bacteria pose a serious threat in the clinic. This is particularly true for opportunistic pathogens that possess high intrinsic resistance. Though many studies have focused on understanding the acquisition of bacterial resistance upon exposure to antimicrobials, the mechanisms controlling intrinsic resistance are not well understood. In this study, we subjected the model opportunistic superbug Pseudomonas aeruginosa to 14 antimicrobials under highly controlled conditions and assessed its response using expression- and fitness-based genomic approaches. Our results reveal that gene expression changes and mutant fitness in response to sub-MIC antimicrobials do not correlate on a genomewide scale, indicating that gene expression is not a good predictor of fitness determinants. In general, fewer fitness determinants were identified for antiseptics and disinfectants than for antibiotics. Analysis of gene expression and fitness data together allowed the prediction of antagonistic interactions between antimicrobials and insight into the molecular mechanisms controlling these interactions. IMPORTANCE Infections involving multidrug-resistant pathogens are difficult to treat because the therapeutic options are limited. These infections impose a significant financial burden on infected patients and on health care systems. Despite years of antimicrobial resistance research, we lack a comprehensive understanding of the intrinsic mechanisms controlling antimicrobial resistance. This work uses two fine-scale genomic approaches to identify genetic loci important for antimicrobial resistance of the opportunistic pathogen Pseudomonas aeruginosa . Our results reveal that antibiotics have more resistance determinants than antiseptics/disinfectants and that gene expression upon exposure to antimicrobials is not a good predictor of these resistance determinants. In addition, we show that when used together, genomewide gene expression and fitness profiling can provide mechanistic insights into multidrug resistance mechanisms.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3