Dysregulated pulmonary inflammatory responses exacerbate the outcome of secondary aspergillosis following influenza

Author:

Lee Chrono K.1,Oliveira Lorena V. N.1,Akalin Ali2,Specht Charles A.1,Lourenco Diana1,Gomez Christina L.1,Ramirez-Ortiz Zaida G.1,Wang Jennifer P.1ORCID,Levitz Stuart M.1ORCID

Affiliation:

1. Department of Medicine, The University of Massachusetts Chan Medical School , Worcester, Massachusetts, USA

2. Department of Pathology, The University of Massachusetts Chan Medical School , Worcester, Massachusetts, USA

Abstract

ABSTRACT Inhalation of airborne conidia of the ubiquitous fungus Aspergillus fumigatus commonly occurs but invasive aspergillosis is rare except in profoundly immunocompromised persons. Severe influenza predisposes patients to invasive pulmonary aspergillosis by mechanisms that are poorly defined. Using a post-influenza aspergillosis model, we found that superinfected mice had 100% mortality when challenged with A. fumigatus conidia on days 2 and 5 (early stages) of influenza A virus infection but 100% survival when challenged on days 8 and 14 (late stages). Influenza-infected mice superinfected with A. fumigatus had increased levels of the pro-inflammatory cytokines and chemokines interleukin (IL)-6, tumor necrosis factor (TNF)α, interferon (IFN)β, IL-12p70, IL-1α, IL-1β, CXC motif chemokine ligand 1 (CXCL1), granulocyte-colony-stimulating factor (G-CSF), macrophage inflammatory protein (MIP)-1α, MIP-1β, regulated upon activation, normal T cell expressed and presumably secreted (RANTES), and monocyte chemoattractant protein (MCP)-1. Surprisingly, on histopathological analysis, superinfected mice did not have greater lung inflammation compared with mice infected with influenza alone. Mice infected with influenza had dampened neutrophil recruitment to the lungs following subsequent challenge with A. fumigatus , but only if the fungal challenge was executed during the early stages of influenza infection. However, influenza infection did not have a major effect on neutrophil phagocytosis and killing of A. fumigatus conidia. Moreover, minimal germination of conidia was seen on histopathology even in the superinfected mice. Taken together, our data suggest that the high mortality rate seen in mice during the early stages of influenza-associated pulmonary aspergillosis is multifactorial with a greater contribution from dysregulated inflammation than microbial growth. IMPORTANCE Severe influenza is a risk factor for fatal invasive pulmonary aspergillosis; however, the mechanistic basis for the lethality is unclear. Utilizing an influenza-associated pulmonary aspergillosis (IAPA) model, we found that mice infected with influenza A virus followed by Aspergillus fumigatus had 100% mortality when superinfected during the early stages of influenza but survived at later stages. While superinfected mice had dysregulated pulmonary inflammatory responses compared to controls, they had neither increased inflammation nor extensive fungal growth. Although influenza-infected mice had dampened neutrophil recruitment to the lungs following subsequent challenge with A. fumigatus , influenza did not affect the ability of neutrophils to clear the fungi. Our data suggest that the lethality seen in our model of IAPA is multifactorial with dysregulated inflammation being a greater contributor than uncontrollable microbial growth. If confirmed in humans, our findings provide a rationale for clinical studies of adjuvant anti-inflammatory agents in the treatment of IAPA.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3