ATP-Dependent but Proton Gradient-Independent Polyphosphate-Synthesizing Activity in Extraradical Hyphae of an Arbuscular Mycorrhizal Fungus

Author:

Tani Chiharu1,Ohtomo Ryo2,Osaki Mitsuru1,Kuga Yukari3,Ezawa Tatsuhiro1

Affiliation:

1. Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan

2. NARO-NILGS, Nasushiobara, Tochigi 329-2793, Japan

3. Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi Hiroshima, Hiroshima 739-8521, Japan

Abstract

ABSTRACT Arbuscular mycorrhizal (AM) fungi benefit their host plants by supplying phosphate obtained from the soil. Polyphosphate is thought to act as the key intermediate in this process, but little is currently understood about how polyphosphate is synthesized or translocated within arbuscular mycorrhizas. Glomus sp. strain HR1 was grown with marigold in a mesh bag compartment system, and extraradical hyphae were harvested and fractionated by density gradient centrifugation. Using this approach, three distinct layers were obtained: layers 1 and 2 were composed of amorphous and membranous materials, together with mitochondria, lipid bodies, and electron-opaque bodies, and layer 3 was composed mainly of partially broken hyphae and fragmented cell walls. The polyphosphate kinase/luciferase system, a highly sensitive polyphosphate detection method, enabled the detection of polyphosphate-synthesizing activity in layer 2 in the presence of ATP. This activity was inhibited by vanadate but not by bafilomycin A 1 or a protonophore, suggesting that ATP may not energize the reaction through H + -ATPase but may act as a direct substrate in the reaction. This report represents the first demonstration that AM fungi possess polyphosphate-synthesizing activity that is localized in the organelle fraction and not in the cytosol or at the plasma membrane.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3