In vitro replication of Sendai virus wild-type and defective interfering particle genome RNAs

Author:

Carlsen S R,Peluso R W,Moyer S A

Abstract

A system for studying the in vitro replication of the genome RNAs of Sendai virus and its defective interfering particle DI-H has been developed. Cytoplasmic extracts of baby hamster kidney cells infected with wild-type Sendai virus or coinfected with wild-type Sendai virus plus DI-H were prepared after lysolecithin treatment at 12 h postinfection. The extracts supported the transcription of six viral mRNAs as well as the replication of the Sendai virus 50S (wild-type) and 14S DI-H genome RNAs and their encapsidation into nucleocapsids in the absence of de novo protein synthesis. RNA replication in vitro represented more than 50% of total RNA synthesis, a relative level higher than that found in the infected cell. The proteins required for Sendai virus RNA replication were present in a soluble protein pool at the time of extract preparation. Depletion of the protein pool by prior treatment of infected cells with cycloheximide inhibited subsequent in vitro genome replication without affecting transcription. The cytoplasmic extract may be separated by high-speed centrifugation into two components: the Sendai virus wild-type and DI-H nucleocapsid templates containing the RNA and associated NP, L, and P proteins and the soluble protein fraction containing primarily the P, NP, and M viral proteins with trace amounts of the L, HN, Fo, and nonstructural C proteins. The isolated intracellular DI-H nucleocapsid template alone cannot replicate its RNA, but when recombined with the Sendai virus soluble protein fraction it catalyzes the replication and encapsidation of viral RNAs. The initiation of RNA replication in vitro can be demonstrated because detergent-disrupted purified DI-H virions replicate both positive- and negative-strand RNAs in the presence, but not in the absence, of the soluble protein fraction from an extract of infected cells.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3