The Forkhead Factor FoxE1 Binds to the Thyroperoxidase Promoter during Thyroid Cell Differentiation and Modifies Compacted Chromatin Structure

Author:

Cuesta Isabel12,Zaret Kenneth S.2,Santisteban Pilar1

Affiliation:

1. Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid 28029, Spain

2. Cell and Developmental Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111

Abstract

ABSTRACT The Forkhead box (Fox) transcription factors play diverse roles in differentiation, development, hormone responsiveness, and aging. A pioneer activity of the Forkhead factors in developmental processes has been reported, but how this may apply to other contexts of Forkhead factor regulation remains unexplored. In this study, we address the pioneer activity of the thyroid-specific factor FoxE1 during thyroid differentiation. In response to hormone induction, FoxE1 binds to the compacted chromatin of the inactive thyroperoxidase (TPO) promoter, which coincides with the appearance of strong DNase I hypersensitivity at the FoxE1 binding site. In vitro, FoxE1 can bind to its site even when this is protected by a nucleosome, and it creates a local exposed domain specifically on H1-compacted TPO promoter-containing nucleosome arrays. Furthermore, nuclear factor 1 binds to the TPO promoter simultaneously with FoxE1, and this binding has an additive effect on FoxE1-mediated chromatin structure alteration. On the basis of our findings, we propose that FoxE1 is a pioneer factor whose primary mechanistic role in mediating the hormonal regulation of the TPO gene is to enable other regulatory factors to access the chromatin. The presented model extends the reported pioneer activity of the Forkhead factors to processes involved in hormone-induced differentiation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3