HilE Regulates HilD by Blocking DNA Binding in Salmonella enterica Serovar Typhimurium

Author:

Grenz Jesse R.1,Cott Chubiz Jessica E.1,Thaprawat Pariyamon1,Slauch James M.1ORCID

Affiliation:

1. Department of Microbiology, University of Illinois, Urbana, Illinois, USA

Abstract

ABSTRACT The Salmonella type three secretion system (T3SS), encoded in the Salmonella pathogenicity island 1 (SPI1) locus, mediates the invasion of the host intestinal epithelium. SPI1 expression is dependent upon three AraC-like regulators: HilD, HilC, and RtsA. These regulators act in a complex feed-forward loop to activate each other and hilA , which encodes the activator of the T3SS structural genes. HilD has been shown to be the major integration point of most signals known to activate the expression of the SPI1 T3SS, acting as a switch to control induction of the system. HilE is a negative regulator that acts upon HilD. Here we provide genetic and biochemical data showing that HilE specifically binds to HilD but not to HilC or RtsA. This protein-protein interaction blocks the ability of HilD to bind DNA as shown by both an in vivo reporter system and an in vitro gel shift assay. HilE does not affect HilD dimerization, nor does it control the stability of the HilD protein. We also investigated the role of HilE during the infection of mice using competition assays. Although deletion of hilE does not confer a phenotype, the hilE mutation does suppress the invasion defect conferred by loss of FliZ, which acts as a positive signal controlling HilD protein activity. Together, these data suggest that HilE functions to restrict low-level HilD activity, preventing premature activation of SPI1 until positive inputs reach a threshold required to fully induce the system. IMPORTANCE Salmonella is a leading cause of gastrointestinal and systemic disease throughout the world. The SPI1 T3SS is required for Salmonella to induce inflammatory diarrhea and to gain access to underlying tissue. A complex regulatory network controls expression of SPI1 in response to numerous physiological inputs. Most of these signals impinge primarily on HilD translation or activity. The system is triggered when HilD activity crosses a threshold that allows efficient activation of its own promoter. This threshold is set by HilE, which binds to HilD to prevent the inevitable minor fluctuations in HilD activity from inappropriately activating the system. The circuit also serves as a paradigm for systems that must integrate numerous environmental parameters to control regulatory output.

Funder

HHS | NIH | National Institute of General Medical Sciences

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3