Evidence for the Presence of an F-Type ATP Synthase Involved in Sulfate Respiration in Desulfovibrio vulgaris

Author:

Ozawa Kiyoshi1,Meikari Takanori1,Motohashi Ken2,Yoshida Masasuke2,Akutsu Hideo1

Affiliation:

1. Department of Chemistry and Biotechnology, Faculty of Engineering, Yokohama National University, Hodogaya-ku, Yokohama 240-8501,1 and

2. Research Laboratory of Resources Utilization, R-1, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama 226-0026,2Japan

Abstract

ABSTRACT Using a library of genomic DNA from Desulfovibrio vulgaris Miyazaki F, a strict anaerobe, and two synthetic deoxyoligonucleotide probes designed for F-type ATPases, the genes for open reading frames (ORFs) 1 to 5 were cloned and sequenced. The predicted protein sequences of the gene products indicate that they are composed of 172, 488, 294, 471, and 134 amino acids, respectively, and that they share considerable identity at the amino acid level with δ, α, γ, β, and ɛ subunits found in other F-type ATPases, respectively. Furthermore, a component carrying ATPase activity was partially purified from the cytoplasmic membrane fraction of the D. vulgaris Miyazaki F cells. The N-terminal amino acid sequences of three major polypeptides separated by sodium dodecyl sulfate–12% polyacrylamide gel electrophoresis were identical to those of the products predicted by the sequences of ORF-2, ORF-3, and ORF-4, suggesting that an F-type ATPase is functioning in the D. vulgaris Miyazaki F cytoplasmic membrane. The amount of the F-type ATPase produced in the D. vulgaris Miyazaki F cells is similar to that in the Escherichia coli cells cultured aerobically. It indicates that the enzyme works as an ATP synthase in the D. vulgaris Miyazaki F cells in connection with sulfate respiration.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3