The economical lifestyle of CPR bacteria in groundwater allows little preference for environmental drivers

Author:

Chaudhari Narendrakumar M.,Overholt Will A.,Figueroa-Gonzalez Perla Abigail,Taubert Martin,Bornemann Till L. V.,Probst Alexander J.,Hölzer Martin,Marz Manja,Küsel KirstenORCID

Abstract

Abstract Background The highly diverse Cand. Patescibacteria are predicted to have minimal biosynthetic and metabolic pathways, which hinders understanding of how their populations differentiate in response to environmental drivers or host organisms. Their mechanisms employed to cope with oxidative stress are largely unknown. Here, we utilized genome-resolved metagenomics to investigate the adaptive genome repertoire of Patescibacteria in oxic and anoxic groundwaters, and to infer putative host ranges. Results Within six groundwater wells, Cand. Patescibacteria was the most dominant (up to 79%) super-phylum across 32 metagenomes sequenced from DNA retained on 0.2 and 0.1 µm filters after sequential filtration. Of the reconstructed 1275 metagenome-assembled genomes (MAGs), 291 high-quality MAGs were classified as Cand. Patescibacteria. Cand. Paceibacteria and Cand. Microgenomates were enriched exclusively in the 0.1 µm fractions, whereas candidate division ABY1 and Cand. Gracilibacteria were enriched in the 0.2 µm fractions. On average, Patescibacteria enriched in the smaller 0.1 µm filter fractions had 22% smaller genomes, 13.4% lower replication measures, higher proportion of rod-shape determining proteins, and of genomic features suggesting type IV pili mediated cell–cell attachments. Near-surface wells harbored Patescibacteria with higher replication rates than anoxic downstream wells characterized by longer water residence time. Except prevalence of superoxide dismutase genes in Patescibacteria MAGs enriched in oxic groundwaters (83%), no major metabolic or phylogenetic differences were observed. The most abundant Patescibacteria MAG in oxic groundwater encoded a nitrate transporter, nitrite reductase, and F-type ATPase, suggesting an alternative energy conservation mechanism. Patescibacteria consistently co-occurred with one another or with members of phyla Nanoarchaeota, Bacteroidota, Nitrospirota, and Omnitrophota. Among the MAGs enriched in 0.2 µm fractions,, only 8% Patescibacteria showed highly significant one-to-one correlation, mostly with Omnitrophota. Motility and transport related genes in certain Patescibacteria were highly similar to genes from other phyla (Omnitrophota, Proteobacteria and Nanoarchaeota). Conclusion Other than genes to cope with oxidative stress, we found little genomic evidence for niche adaptation of Patescibacteria to oxic or anoxic groundwaters. Given that we could detect specific host preference only for a few MAGs, we speculate that the majority of Patescibacteria is able to attach multiple hosts just long enough to loot or exchange supplies.

Funder

deutsche forschungsgemeinschaft

ministerium für kultur und wissenschaft des landes nordrhein-westfalen

Friedrich-Schiller-Universität Jena

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Applied Microbiology and Biotechnology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3