Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors

Author:

Lou Y1,Yousef A E1

Affiliation:

1. Department of Food Science and Technology, Ohio State University, Columbus 43210, USA.

Abstract

A sublethal dose of ethanol (5%, vol/vol), acid (HCl, pH 4.5 to 5.0), H2O2 (500 ppm), or NaCl (7%, wt/vol) was added to a Listeria monocytogenes culture at the exponential phase, and the cells were allowed to grow for 1 h. Exponential-phase cells also were heat shocked at 45 degrees C for 1 h. The stress-adapted cells were then subjected to the following factors at the indicated lethal levels--NaCl (25%, wt/vol), ethanol (17.5%, vol/vol), hydrogen peroxide (0.1%, wt/vol), acid (pH 3.5), and starvation on 0.1 M phosphate buffer at pH 7.0 (up to 300 h). Viable counts of the pathogen, after the treatment, were determined on Trypticase soy agar-yeast extract, and survivor plots were constructed. The area (h.log10 CFU/ml) between the control and treatment curves was calculated to represent the protective effect resulting from adaptation to the sublethal stress factor. Adaptation to pH 4.5 to 5.0 or 5% ethanol significantly (P < 0.05) increased the resistance of L. monocytogenes to lethal doses of acid, ethanol, and H2O2. Adaptation to ethanol significantly (P < 0.05) increased the resistance to 25% NaCl. When L. monocytogenes was adapted to 500 ppm of H2O2, 7% NaCl, or heat, resistance of the pathogen to 1% hydrogen peroxide increased significantly (P < 0.05). Heat shock significantly (P < 0.05) increased the resistance to ethanol and NaCl. Therefore, the occurrence of stress protection after adaptation of L. monocytogenes to environmental stresses depends on the type of stress encountered and the lethal factor applied. This "stress hardening" should be considered when current food processing technologies are modified or new ones are developed.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference24 articles.

1. Preservation microbiology and safety: evidence that stress enhances virulence and triggers adaptive mutations. Trends Food Sci;Archer D. L.;Technol.,1996

2. Food and microbiological risks;Baird-Parker A. C.;Microbiology,1994

3. Oxidative stress responses in Escherichia coli and Salmonella typhimurium;Farr S. B.;Microbiol. Rev.,1991

4. Adaptive acidification tolerance response of Salmonella typhimurium;Foster J. W.;J. Bacteriol.,1990

5. Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium;Foster J. W.;J. Bacteriol.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3