Multiplexed Serologic Assay for Nine Anogenital Human Papillomavirus Types
-
Published:2010-05
Issue:5
Volume:17
Page:818-827
-
ISSN:1556-6811
-
Container-title:Clinical and Vaccine Immunology
-
language:en
-
Short-container-title:Clin Vaccine Immunol
Author:
Opalka David1234, Matys Katie1234, Bojczuk Paul1234, Green Tina1234, Gesser Richard1234, Saah Alfred1234, Haupt Richard1234, Dutko Frank1234, Esser Mark T.1234
Affiliation:
1. Wayne Clinical Support, Merck Research Laboratories, 466 Devon Park Dr., Wayne, Pennsylvania 19087-8630 2. Non-Clinical Statistics, Merck Research Laboratories, West Point, Pennsylvania 19486 3. Infectious Disease Vaccines, Merck Research Laboratories, Upper Gwynedd, Pennsylvania 19454 4. Global Medical Affairs, Merck & Co., Inc., North Wales, Pennsylvania 19454
Abstract
ABSTRACT
A multiplexed human papillomavirus (HPV) immunoassay has been developed for the detection of human IgG antibodies to HPV type 6, 11, 16, 18, 31, 33, 45, 52, and 58 virus-like particle (VLP) types in serum following natural infection or immunization with VLP-based vaccines. The VLP antigens were covalently conjugated to carboxyl Luminex microspheres (MS) using a carbodiimide chemistry. Antibody (Ab) titers were determined in a direct binding format, in which an IgG1- to -4-specific, phycoerythrin (PE)-labeled monoclonal antibody (MAb) (HP6043) binds to human serum IgG antibodies. Pooled serum samples from rhesus macaques immunized with a 9-valent VLP-based vaccine served as the reference standard. The overall specificity of the assay was >99%, and the linearity (parallelism) of the assay was <7% per 10-fold dilution. Total assay precision was <19% across 3 different VLP-microsphere lots, 2 secondary antibody lots, and 2 different operators over a period of 3 weeks. Three different methods were used to evaluate serostatus cutoffs (SCO): (i) a clinical sensitivity/specificity analysis based on “likely negative” and “likely positive” samples from nonvaccinees, (ii) stringent upper tolerance limits on samples from “likely negatives,” and (iii) stringent upper tolerance limits from the same “likely negative” sample set after VLP adsorption. Depending on the method to set the serostatus cutoff, the percentage of seropositive samples at the month 48 time point following vaccination with the HPV 6/11/16/18 quadrivalent vaccine ranged from 70% to 100%. This assay has proven useful for measuring the levels of serum antibody to the nine HPV VLPs following natural infection or administration of VLP-based vaccines.
Publisher
American Society for Microbiology
Subject
Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy
Reference27 articles.
1. Brady, J. F. 2006. Mathematical aspects of immunoassays, p. 249-270. In J. M. Van Emon (ed.), Immunoassay and other bioanalytical techniques. CRC Press, Boca Raton, FL. 2. Buck, C. B., D. V. Pastrana, D. R. Lowy, and J. T. Schiller. 2005. Generation of HPV pseudovirions using transfection and their use in neutralization assays. Methods Mol. Med.119:445-462. 3. Capen, R., M. L. Shank-Retzlaff, H. Sings, M. Esser, C. Sattler, M. Washabaugh, and R. Sitrin. 2007. Establishing potency specifications for antigen vaccines. BioProcess Int.5:30-43. 4. Carter, J. J., L. A. Koutsky, J. P. Hughes, S. K. Lee, J. Kuypers, N. Kiviat, and D. A. Galloway. 2000. Comparison of human papillomavirus types 16, 18, and 6 capsid antibody responses following incident infection. J. Infect. Dis.181:1911-1919. 5. Evaluation of Previously Assigned Antibody Concentrations in Pneumococcal Polysaccharide Reference Serum 89SF by the Method of Cross-Standardization
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|