Phosphorylated Serine Residues and an Arginine-Rich Domain of the Moloney Murine Leukemia Virus p12 Protein Are Required for Early Events of Viral Infection

Author:

Yueh Andrew1,Goff Stephen P.21

Affiliation:

1. Howard Hughes Medical Institute, College of Physicians and Surgeons, Columbia University, New York, New York 10032

2. Department of Biochemistry and Molecular Biophysics

Abstract

ABSTRACT Mutational analyses of the p12 Gag phosphoprotein of Moloney murine leukemia virus have demonstrated its participation in both virus assembly and the early stages of infection. The molecular mechanisms by which p12 functions in these events are still poorly understood. We performed studies to examine the significance of p12 phosphorylation in the viral life cycle. Alanine substitutions were introduced at the potential phosphorylation sites in p12, and the resulting mutants were tested for replication. Mutant viruses with changes at S61 and S78 were severely impaired, whereas the other mutant viruses were viable. S61 was shown to be required for normal levels of phosphorylation of p12 in vivo. These defective mutant viruses showed no apparent alteration to Gag protein processing or reduction in the yield of virions after transient transfection, but the mutants failed to form circular viral DNAs in acutely infected cells. Sequence analysis of revertant clones derived from S(61,65)A mutant virus revealed two classes: one group with a single mutation at a residue adjacent to S61 and another group with mutations introducing new positive charges surrounding S61. In vivo [ 32 P]orthophosphate labeling indicated that the rescue of the S(61,65)A mutant virus did not result in a significant increase in the phosphorylation level of p12. Alanine substitutions of an arginine-rich stretch near S61 (at R-66, -68, -70, and -71) resulted in the same phenotype as the S(61,65)A mutant virus. The restored function of S(61,65)A mutant virus by second or third site mutations may result from a structural change or the addition of positively charged residues in the arginine-rich region.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3