Defining Genes in the Genome of the Hyperthermophilic Archaeon Pyrococcus furiosus : Implications for All Microbial Genomes

Author:

Poole Farris L.1,Gerwe Brian A.1,Hopkins Robert C.1,Schut Gerrit J.1,Weinberg Michael V.1,Jenney Francis E.1,Adams Michael W. W.1

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229

Abstract

ABSTRACT The original genome annotation of the hyperthermophilic archaeon Pyrococcus furiosus contained 2,065 open reading frames (ORFs). The genome was subsequently automatically annotated in two public databases by the Institute for Genomic Research (TIGR) and the National Center for Biotechnology Information (NCBI). Remarkably, more than 500 of the originally annotated ORFs differ in size in the two databases, many very significantly. For example, more than 170 of the predicted proteins differ at their N termini by more than 25 amino acids. Similar discrepancies were observed in the TIGR and NCBI databases with the other archaeal and bacterial genomes examined. In addition, the two databases contain 60 (NCBI) and 221 (TIGR) ORFs not present in the original annotation of P. furiosus . In the present study we have experimentally assessed the validity of 88 previously unannotated ORFs. Transcriptional analyses showed that 11 of 61 ORFs examined were expressed in P. furiosus when grown at either 95 or 72°C. In addition, 7 of 54 ORFs examined yielded heat-stable recombinant proteins when they were expressed in Escherichia coli , although only one of the seven ORFs was expressed in P. furiosus under the growth conditions tested. It is concluded that the P. furiosus genome contains at least 17 ORFs not previously recognized in the original annotation. This study serves to highlight the discrepancies in the public databases and the problems of accurately defining the number and sizes of ORFs within any microbial genome.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3