Salinity-Dependent Switching of Osmolyte Strategies in a Moderately Halophilic Bacterium: Glutamate Induces Proline Biosynthesis in Halobacillus halophilus

Author:

Saum Stephan H.1,Müller Volker1

Affiliation:

1. Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany

Abstract

ABSTRACT The moderately halophilic bacterium Halobacillus halophilus copes with the salinity in its environment by the production of compatible solutes. At intermediate salinities of around 1 M NaCl, cells produce glutamate and glutamine in a chloride-dependent manner (S. H. Saum, J. F. Sydow, P. Palm, F. Pfeiffer, D. Oesterhelt, and V. Müller, J. Bacteriol. 188:6808-6815, 2006). Here, we report that H. halophilus switches its osmolyte strategy and produces proline as the dominant solute at higher salinities (2 to 3 M NaCl). The proline biosynthesis genes proH , proJ , and proA were identified. They form a transcriptional unit and encode the pyrroline-5-carboxylate reductase, the glutamate-5-kinase, and the glutamate-5-semialdehyde dehydrogenase, respectively, catalyzing proline biosynthesis from glutamate. Expression of the genes was clearly salinity dependent and reached a maximum at 2.5 M NaCl, indicating that the pro operon is involved in salinity-induced proline biosynthesis. To address the role of anions in the process of pro gene activation and proline biosynthesis, we used a cell suspension system. Chloride salts lead to the highest accumulation of proline. Interestingly, chloride could be substituted to a large extent by glutamate salts. This unexpected finding was further analyzed on the transcriptional level. The cellular mRNA levels of all three pro genes were increased up to 90-fold in the presence of glutamate. A titration revealed that a minimal concentration of 0.2 M glutamate already stimulated pro gene expression. These data demonstrate that the solute glutamate is involved in the switch of osmolyte strategy from glutamate to proline as the dominant compatible solute during the transition from moderate to high salinity.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3