GlpR Represses Fructose and Glucose Metabolic Enzymes at the Level of Transcription in the Haloarchaeon Haloferax volcanii

Author:

Rawls Katherine S.1,Yacovone Shalane K.1,Maupin-Furlow Julie A.1

Affiliation:

1. University of Florida, Department of Microbiology and Cell Science, Gainesville, Florida 32611-0700

Abstract

ABSTRACT In this study, a DeoR/GlpR-type transcription factor was investigated for its potential role as a global regulator of sugar metabolism in haloarchaea, using Haloferax volcanii as a model organism. Common to a number of haloarchaea and Gram-positive bacterial species, the encoding glpR gene was chromosomally linked with genes of sugar metabolism. In H. volcanii , glpR was cotranscribed with the downstream phosphofructokinase (PFK; pfkB ) gene, and the transcript levels of this glpR-pfkB operon were 10- to 20-fold higher when cells were grown on fructose or glucose than when they were grown on glycerol alone. GlpR was required for repression on glycerol based on significant increases in the levels of PFK ( pfkB ) transcript and enzyme activity detected upon deletion of glpR from the genome. Deletion of glpR also resulted in significant increases in both the activity and the transcript ( kdgK1 ) levels of 2-keto-3-deoxy- d- gluconate kinase (KDGK), a key enzyme of haloarchaeal glucose metabolism, when cells were grown on glycerol, compared to the levels obtained for media with glucose. Promoter fusions to a β-galactosidase bgaH reporter revealed that transcription of glpR-pfkB and kdgK1 was modulated by carbon source and GlpR, consistent with quantitative reverse transcription-PCR (qRT-PCR) and enzyme activity assays. The results presented here provide genetic and biochemical evidence that GlpR controls both fructose and glucose metabolic enzymes through transcriptional repression of the glpR-pfkB operon and kdgK1 during growth on glycerol.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3