Yeast DNA Polymerase ζ Is an Efficient Extender of Primer Ends Opposite from 7,8-Dihydro-8-Oxoguanine and O 6 -Methylguanine

Author:

Haracska Lajos1,Prakash Satya1,Prakash Louise1

Affiliation:

1. Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555-1061

Abstract

ABSTRACT Genetic studies in Saccharomyces cerevisiae have indicated the requirement of DNA polymerase (Pol) ζ for mutagenesis induced by UV light and by other DNA damaging agents. However, on its own, Polζ is highly inefficient at replicating through DNA lesions; rather, it promotes their mutagenic bypass by extending from the nucleotide inserted opposite the lesion by another DNA polymerase. So far, such a role for Polζ has been established for cyclobutane pyrimidine dimers, (6-4) dipyrimidine photoproducts, and abasic sites. Here, we examine whether Polζ can replicate through the 7,8-dihydro-8-oxoguanine (8-oxoG) and O 6 -methylguanine (m6G) lesions. We chose these two lesions for this study because the replicative polymerase, Polδ, can replicate through them, albeit weakly. We found that Polζ is very inefficient at inserting nucleotides opposite both these lesions, but it can efficiently extend from the nucleotides inserted opposite them by Polδ. Also, the most efficient bypass of 8-oxoG and m6G lesions occurs when Polδ is combined with Polζ, indicating a role for Polζ in extending from the nucleotides inserted opposite these lesions by Polδ. Thus, Polζ is a highly specialized polymerase that can proficiently extend from the primer ends opposite DNA lesions, irrespective of their degree of geometric distortion. Polζ, however, is unusually sensitive to geometric distortion of the templating residue, as it is highly inefficient at incorporating nucleotides even opposite the moderately distorting 8-oxoG and m6G lesions.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3