Affiliation:
1. State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou, China
Abstract
ABSTRACT
African swine fever (ASF) is a devastating disease caused by the African swine fever virus (ASFV) that adversely affects the pig industry. The spleen is the main target organ of ASFV; however, the function of metabolites in the spleen during ASFV infection is yet to be investigated. To define the metabolic changes in the spleen after ASFV infection, untargeted and targeted metabolomics analyses of spleens from ASFV-infected pigs were conducted. Untargeted metabolomics analysis revealed 540 metabolites with significant differential levels. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that these metabolites were mainly enriched in metabolic pathways, including nucleotide metabolism, purine metabolism, arginine biosynthesis, and neuroactive ligand-receptor interaction. Moreover, 134 of 540 metabolites quantified by targeted metabolomics analysis had differential levels and were enriched in metabolic pathways such as the biosynthesis of cofactors, ABC transporters, and biosynthesis of amino acids. Furthermore, coalition analysis of untargeted and targeted metabolomics data revealed that the levels of acylcarnitines, which are intermediates of fatty acid β-oxidation, were significantly increased in ASFV-infected spleens compared with those in the uninfected spleens. Moreover, inhibiting fatty acid β-oxidation significantly reduced ASFV replication, indicating that fatty acid β-oxidation is essential for this process. To our knowledge, this is the first report presenting the metabolite profiles of ASFV-infected pigs. This study revealed a new mechanism of ASFV-mediated regulation of host metabolism. These findings provide new insights into the pathogenic mechanisms of ASFV, which will benefit the development of target drugs for ASFV replication.
IMPORTANCE
African swine fever virus, the only member of the
Asfarviridae
family, relies on hijacking host metabolism to meet the demand for self-replication. However, the change in host metabolism after African swine fever virus (ASFV) infection remains unknown. Here, we analyzed the metabolic changes in the pig spleen after ASFV infection for the first time. ASFV infection increased the levels of acylcarnitines. Inhibition of the production and metabolism of acylcarnitines inhibited ASFV replication. Acylcarnitines are the vital intermediates of fatty acid β-oxidation. This study highlights the critical role of fatty acid β-oxidation in ASFV infection, which may help identify target drugs to control African swine fever disease.
Funder
MOST | National Key Research and Development Program of China
Major Science and Technology project of Gansu Province,China
Institute of Animal health, Guangdong Academy of Agricultural Sciences of china
CARS | National Swine Industry Technology System
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献